The University of Chicago Booth School of Business

A Few Thoughts on

Asset Bubbles \& Interest Rates

Joseph L. Pagliari, Jr.
Clinical Professor of Real Estate
November 5, 2015
$9^{\text {th }}$ Annual Booth Real Estate Conference

Some Thoughts on Bubbles \& Rates: Agenda

- Real Estate \& Asset Bubbles:
- Long history of asset bubbles
- Rationalizing "bubbles"
- Impact on risk \& return
- The volatility of land values
- Who cares \& why?
- Interest Rates in a Historical Context:
- Near all-time lows
- Cap rates v. interest rates
- Spreads to Treasuries - varying with LTV \& time
- Interest Rates in a Forward-Looking Context:
- Today's yield curve \rightarrow implications for tomorrow's rates
- Consensus view on tomorrow's interest rates
- Consensus view on tomorrow's inflation rates
- Consensus is often wrong \rightarrow cautionary note

Is CRE in "Bubble" Territory?

- How should we view the level of CRE prices?

Green Street Property Sector Indices

Property sector indices are indexed to 100 at their ' 07 peaks.
Source: Green Street Advisors, Commercial Property Price Index, October 6, 2015.

"Bubbles" \leftarrow Easy to Spot, After They Bust

- Finance has a long history of asset bubbles, dating as far back as at least:
- 1637: Dutch tulip mania
- 1711: British South Sea bubble
- 1763: Mississippi Land Company
- But, of course, bubbles are easily spotted after they burst!
- Before they burst, there are simply disagreements about the likely path of future prices.
- This is the essence of any debate about current prices:
\Rightarrow Have prices strayed too far from some sense of "fundamental" value?
- In finance (real estate or otherwise), the debate about asset prices generally falls into three possible explanations:
Rational $\begin{cases}\text { 1. "This time is different" - there has been a shift in some } \\ \text { underlying structural factor(s) [e.g., globalization, legislation, } \\ \text { socio-economic, political, etc.]. }\end{cases}$

2. "Noise" - simply some random fluctuations (with the mistaken impression of trend).

Irrational $\{$ 3. "Animal spirits" - a pattern, driven by excessive optimism (a "bubble") or pessimism, which is about to reverse itself.

More Recent Examples \leftarrow Where Were You?

- Let's consider three more-recent examples:
- Late 1990s: San Francisco office rents
- Mid 2000s: Home prices
- Late 2000s: Commercial real estate prices
- As you look at these examples, candidly ask yourself:
\Rightarrow Did you recognize the bubble before it burst?

It's easy to consider yourself a maven, after the fact!

- If so, did you have the (financial) courage to act on it?
- Acting on the recognition of the bubble can take two forms:

1. Avoidance of over-priced assets \leftarrow risk-averting strategy
2. Exploit the over-priced assets
\leftarrow risk-seeking strategy

Using volatility to your advantage. As one example, consider the brilliance and the guts displayed in The Big Short in which certain hedge-fund managers: a) recognized the bubble in home prices, b) understood the exposure in the junior tranches of sub-prime debt and c) invented credit-default swaps on these junior tranches. [CDS existed previously, but not on sub-prime debt.]

San Francisco Office Rents - Background

- Consider the predicament of office-building investors in the late 1990s:
- The "dot.com" market is booming.
- Northern California is the epicenter of the dot.com revolution.
- San Francisco is particularly challenging from a supply/construction perspective (hilly peninsula jutting into the ocean, earthquakes, etc.).
- "Sticky" supply v. variable demand
\Rightarrow Particularly prone to boom-\&-bust cycles
- Effective rents increase:
- by $\sim 100 \%$ in 3 years and
- increase by $\sim 50 \%$ in 1.5 years:
\Rightarrow How to underwrite?

San Francisco Office Rents \rightarrow Values

Effective Rents in San Francisco's Financial District

Source: Torto Wheaton Research and Instructor's Calculations

San Francisco Office Rents \rightarrow Values After the Crash

Effective Rents in San Francisco's Financial District

Source: Torto Wheaton Research and Instructor's Calculations

U.S. Home Prices - Perhaps the Best-Known Example

Source: Robert Shiller | Irrational Exuberance and Instructor's calculations.

U.S. Home Prices - Deviation from the Trend \rightarrow Bubble?

Source: Robert Shiller | Irrational Exuberance and Instructor's calculations.

U.S. Home Prices \rightarrow Market-Level Booms \& Busts

"Bubble" Growth and Subsequent Decline for Certain US Housing Markets for the Period 2000 through 2012

What About U.S. Commercial Real Estate Prices?

NCREIF Index: Market Values, Rescaled NOI and Capitalization Rates Based on a \$100
Investment for the Period 1978 through 2014

Greenspan's Definition of a Bubble

NCREIF Index: Market Values, Rescaled NOI and Capitalization Rates Based on a \$100
Investment for the Period 1978 through 2014

Land Values Are the Most "Bubblicious" of All

Path of Real Home Prices and Building Costs as well as Population and Interest Rates from 1890

Source: Robert Shiller | Irrational Exuberance and Instructor's calculations.

Replacement-Cost Fallacy $=f$ (Land Value Volatility)

- There is an optionality value embedded in land values.
- The value of this option is extremely volatile.
- Consider the typical replacement cost analysis:

Property Value	$<$		
	+		
Repland Value			
the Improvements		\quad	Impost of
:---:			

- Properties acquired (or developed) during the bubble (almost) always illustrate this inequality

This sort

- If you disagree, how many deals lost in investment (or loan) committee because:

Property Value $>$ Land Value + Replacement Cost of the Improvements

Replacement-Cost Fallacy \rightarrow Deals Done before the Crash

- But, when the bubble bursts, land values crash and the inequality is reversed!

Property Value $>\underbrace{\text { Land Value }}+$ Replacement Cost of the Improvements In a crash, land values approach zero

- Consider the performance of various high-profile deals following the crash:

Source: Yahoo Finance and Instructor's annotations

Bubble Concerns Worsen the Risk/Return Continuum

Illustration of Changing Risk/Return Continuum as Bubble Concerns Mount

You are, of course, free to
"bet" against the market's consensus view.

Return Volatility

Asset Bubbles \leftarrow Deviations from a Trend

- Commercial real estate differs from many other assets in that the "crash" generally does not push asset values to zero (v . dot.com stocks being vaporized). Instead, changing property values can be considered as deviations around a trend:

NCREIF Index: Market Values, Rescaled NOI and Capitalization Rates Based on a $\$ 100$
Investment for the Period 1978 through 2014

Asset Bubbles \leftarrow Who Cares?

- If you are a long-term, low-levered CRE investor, these deviations matter little.
- So, these asset bubbles matter more to:
- Long-term, high-levered investors - particularly those with short-term debt maturities (e.g., Macklowe's EOP | Manhattan*) and/or poorly laddered maturities (e.g., pre-crash GGP v. SPG).
- Short-term investors (e.g., value-add \& opp funds, developers, etc.).
- High-leverage, high-yield lenders - particularly those with levered balance sheets (e.g., Blackstone mortgage REIT, Colony Capital debt funds, etc.).
- Government agencies (e.g., Fannie, Freddie, HUD, Fed, etc.):

0 with exposure to high-leverage borrowers, and
0 who become the "lenders of last resort" in a downturn.

* Aggravated by $\$ 1$ billion recourse bridge loan.

Some Thoughts on Bubbles \& Rates: Agenda

- Real Estate \& Asset Bubbles:
- Long history of asset bubbles
- Rationalizing "bubbles"
- Impact on risk \& return
- The volatility of land values
- Who cares \& why?
- Interest Rates in a Historical Context:
- Near all-time lows
- Cap rates v. interest rates
- Spreads to Treasuries - varying with LTV \& time
- Interest Rates in a Forward-Looking Context:
- Today's yield curve \rightarrow implications for tomorrow's rates
- Consensus view on tomorrow's interest rates
- Consensus view on tomorrow's inflation rates
- Consensus is often wrong \rightarrow cautionary note

Some Historical Context

Historical Path of Treasury Bond Interest Rates
1-, 10- and 30-year Maturities for the Period 1954 to YTD 2015

Source: Federal Reserve Bank of St. Louis \| Board of Governors of the Federal Reserve System

Investors' Concern: Fat Right-Side Tail

Stylized Comparison of Current Interest Rate to History of Long-Term Interest Rates

Valuations \& Interest Rates

-Some investors naively assume:

- Interest Rates $\uparrow \Rightarrow$ Asset Prices \downarrow
-However, a change in interest rates $=f(\bullet)$:
- a change in inflation expectations, and/or
- a change in the real return requirement.
-These two factors can have very different impacts on asset values:
-Inflation $\uparrow \Rightarrow$ Interest Rates $\uparrow \Rightarrow$ Asset Prices \uparrow
-Real Return $\uparrow \Rightarrow$ Interest Rates $\uparrow \Rightarrow$ Asset Prices \downarrow
-Inflationary increases may be favorable for real estate
-Real return increases may be unfavorable for most all asset classes, including real estate

History: Current Return v. Interest Rates

-A comparison of cap rates \& cash-flow yields v. 5-year Treasury rates:
Comparison of 5-year US Treasury Rates to NCREIF Cap Rates
\& Cash-Flow Yields for the Quarterly Periods 1979-2014

History: Current Return v. Interest Rates

-A comparison of cap rates \& cash-flow yields v. 5-year Treasury rates:
Comparison of 5-year US Treasury Rates to NCREIF Cap Rates
\& Cash-Flow Yields for the Quarterly Periods 1979-2014

History: Interest Rates v. Current Return

-The differential highlights that these are fundamentally different securities:

Comparison of 5-year U.S. Treasury Rates to

NCREIF Cash-Flow Yields for the Quarterly Periods 1979-2014

Conceptual: Interest Rates v. Current Return

-What does the difference (δ) between bond rates $\left(i / P_{0}\right)$ and real estate's cash-flow yields $\left(C F_{1} / P_{0}\right)$ imply?
-Fundamentally, this is a comparison between a fixed-rate, nominalyield security with a variable-rate, real-yield security.
-More specifically, the difference equals:

- expected RE's growth (g) in cash flow less
- the difference in:
- RE's expected real return ($r_{R E}$), and
- Treasury bonds' expected real return $\left(t_{T B}\right)$.

$$
\delta=g-\left(r_{R E}-r_{T B}\right)
$$

Illustration: Interest Rates v. Current Return

-As an illustration, assume:

- bond rates $\left(i / P_{0}\right)=2.0 \%$
- real estate's cash-flow yields $\left(C F_{1} / P_{0}\right)=5.0 \%$
- \therefore the observed difference $(\delta)=2.0 \%-5.0 \%=<3.0 \%>$
- Further assume:
- real estate's expected cash-flow growth $(g)=1.5 \%$
- real estate's real return $\left(r_{R E}\right)=5.0 \%$,
- Treasury bond's real return $\left(r_{T B}\right)=0.5 \%$
- \therefore the implied difference $(\delta)=1.5 \%-(5.0 \%-0.5 \%)=<3.0 \%>$
-Also assumes that RE's growth rate equals the inflation rate $(\mathrm{g}=\rho)$

Illustration: Interest Rates v. Current Return

An Aside: The Path of TIPS Rates

[^0]
An Aside: The Path of TIPS Rates

Source: U.S. Department of the Treasury

Technical: Interest Rates v. Current Return

-Before considering the difference (δ) between bond rates $\left(i / P_{0}\right)$ and real estate's cash-flow yields $\left(C F_{1} / P_{0}\right)$, we need two relationships:

- The nominal (k) and real (r) returns on any asset are linked by:

$$
k=(1+r)(1+\rho)-1
$$

- where inflation (ρ) is the link between nominal and real returns.
-The total (nominal) return on real estate is given by:

$$
k_{R E}=\frac{C F_{1}}{P_{0}}+g
$$

- This assumes constant cap rates.
-Let's use these relationships to examine δ

Technical: Interest Rates v. Current Return (continued)

-Consider:

$$
\begin{aligned}
\delta & =\frac{i}{P_{0}}-\frac{C F_{1}}{P_{0}} \\
& =\frac{i}{P_{0}}-\left(k_{R E}-g\right) \\
& =\left(1+r_{T B}\right)(1+\rho)-1-\left[\left(1+r_{R E}\right)(1+\rho)-1-g\right]
\end{aligned}
$$

Eliminate \& collect terms

$$
\approx g-\left(r_{R E}-r_{T B}\right)
$$

Mortgage Interest Rates

- Of course, mortgage interest rates are priced at a spread to Treasuries:

We borrow at a spread to Treasuries

These Spreads Are Also Volatile

-Lending spreads: generally, a poor predictor of future asset return \& volatility:

Some Thoughts on Bubbles \& Rates: Agenda

- Real Estate \& Asset Bubbles:
- Long history of asset bubbles
- Rationalizing "bubbles"
- Impact on risk \& return
- The volatility of land values
- Who cares \& why?
- Interest Rates in a Historical Context:
- Near all-time lows
- Cap rates v. interest rates
- Spreads to Treasuries - varying with LTV \& time
- Interest Rates in a Forward-Looking Context:
- Today's yield curve \rightarrow implications for tomorrow's rates
- Consensus view on tomorrow's interest rates
- Consensus view on tomorrow's inflation rates
- Consensus is often wrong \rightarrow cautionary note

Today's Yield Curve \& Future Interest Rates

-The "expectations theory" of future interest rates:

Maturity	Rate
1 year 2 years	$\left.\begin{array}{c}\text { Then: } \\ 2.0 \% \\ 2.5 \%\end{array}\right] \quad$The implied one-year interest rate in one year is expected to be $\sim 3.0 \%$

-That is, bond investors are assumed to be indifferent between:

$$
\underbrace{(1+.02)(1+x)}=\underbrace{(1+.025)^{2}} \Rightarrow x \approx .03
$$

Holding the 1-year security and "rolling over" to 1- year security in the second year

Holding the 2-year security to maturity
-This approach can be extended to the entirety of today's yield curve

Today's Yield Curve

Estimated Yield Curve for U.S. Treasury Rates as of November 2, 2015

Sources: U.S. Department of the Treasury and Citadel Realty's calculations.

Market's View of Expected Future One-Year Rates

Current and Implied Forward One-Year Treasury Rates as of November 2, 2015

Current and Implied Forward Five-Year Treasury Rates as of November 2, 2015

Market's View of Expected Future Ten-Year Rates

Current and Implied Forward Ten-Year Treasury Rates as of November 2, 2015

Rates Available Currently and (Implied for) Subsequent Years

Today's Yield Curve \rightarrow Expected Inflation

Implied Inflation Rates Based Upon U.S. Treasury Rates and TIPS Yields as of November 2, 2015

Source: U.S. Department of the Treasury and Instructor's calculations.

Caveat: Market's View Is Often Wrong

Actual 1 m Libor vs. Historical Forward Curves

A Similar Perspective on Market's Omnipotence

This chart also illustrates the divergence between actual and expected.
Market-predicted LIBOR rate exceeded the actual by 73 bps , on average.

A Similar Perspective: Long-Term (10-Year)Treasuries

Source: Federal Reserve Bank of St Louis, Matthew Kiein's calculations

Sources: Matthew C. Klein, "Greenspan's Bogus 'Conundrum'," FT Alphaville, September 3, 2015 and referenced in John Cochrane's Grump Economist blog, September 16, 2015.

Cautionary Note

- If you are really good at forecasting future interest rates:
- Get out of the real estate business
- Get into the bond-trading business
\Rightarrow Sit in your pajamas,
\Rightarrow trade from home for <1 hour/day, and
\Rightarrow hit the beach (golf course, bike trails, etc.) the rest of your day!

[^0]: Source: U.S. Department of the Treasury

