

"Some Thoughts on Real Estate Pricing"

Joseph L. Pagliari, Jr.

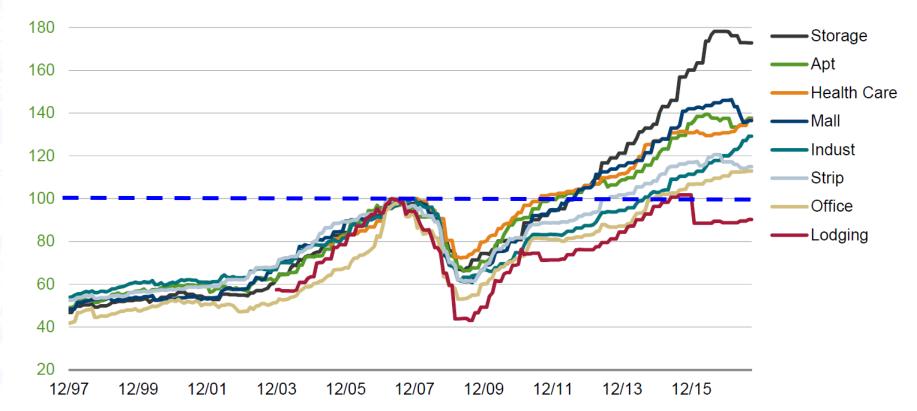
Clinical Professor of Real Estate

October 31, 2017

11th Annual Chicago Booth Real Estate Conference

Chicago, Illinois

Some Thoughts on Real Estate Pricing: Agenda


- Context:
 - "Bubble" pricing?
 - Past bubbles
 - Greenspan's definition of a bubble
- ► The Spread between Interest Rates and Cap Rates:
 - Historical perspective including inflation's role
 - Interest rates v. cash-flow yields
 - Tilting your portfolio: bonds v. real estate
 - Impacts of shifting capitalization rates
- ► How Real Estate Ought to be Priced:
 - What do I want v. How will it be generated?
 - TIPS market □ real-return requirements
 - Current capitalization rates v. history
- ► Addendum: Forward (Interest & Inflation) Rates

Is CRE in "Bubble" Territory?

How should we view the level of CRE prices?

Green Street Property Sector Indices

Property sector indices are indexed to 100 at their '07 peaks.

Source: Green Street Advisors, Commercial Property Price Index, October 10, 2017.

"Bubbles" ← Easy to Spot, After They Bust

- Finance has a long history of asset bubbles, dating as far back as at least:
 - 1637: Dutch tulip mania
 - 1711: British South Sea bubble
 - 1763: Mississippi Land Company
 - -
- But, of course, bubbles are easily spotted <u>after</u> they burst!
- Before they burst, there are simply disagreements about the likely path of future prices.
- This is the essence of any debate about current prices:
 - > Have prices strayed too far from some sense of "fundamental" value?

The Debate About Asset Prices

• In finance (real estate or otherwise), the debate about asset prices generally falls into three possible explanations:

Rational -

- 1. "This time is different" there has been a shift in some underlying structural factor(s) [e.g., globalization, legislation, socio-economic, political, etc.].
- 2. "Noise" simply some random fluctuations (with the mistaken impression of trend).
- 3. "Animal spirits" a pattern, driven by excessive optimism (a "bubble") or pessimism, which is about to reverse itself.

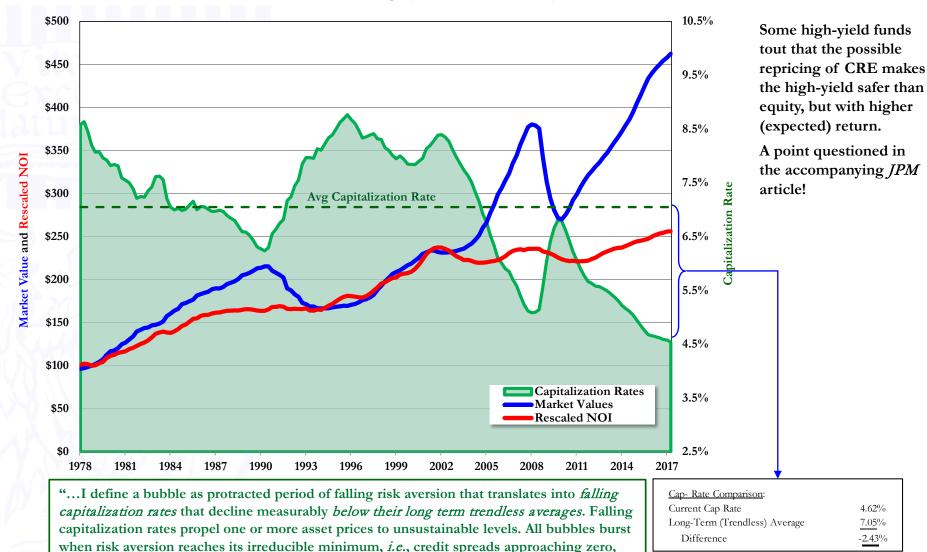
More Recent Examples ← Where Were You?

- Let's recall three more-recent examples:
 - Late 1990s: San Francisco office rents
 - Mid 2000s: (U.S.) Home prices
 - Mid 2000s: (U.S.) Commercial real estate prices
- As you consider these examples, candidly ask yourself:
 - → Did you recognize the bubble before it burst?

It's easy to consider yourself an expert, after the fact!

- If so, did you have the (financial) courage to act on it?
- Acting on the recognition of the bubble can take two forms:
 - 1. Avoidance of over-priced assets \leftarrow risk-averting strategy
 - 2. Exploit the over-priced assets \leftarrow risk-seeking strategy

Using the correction to your advantage. As one example, consider the brilliance and the guts displayed in *The Big Short* in which certain hedge-fund managers: a) recognized the bubble in home prices, b) understood the exposure in the junior tranches of sub-prime debt and c) invented credit-default swaps on these junior tranches. [CDS existed previously, but not on sub-prime debt.]



Greenspan's Definition of a Bubble

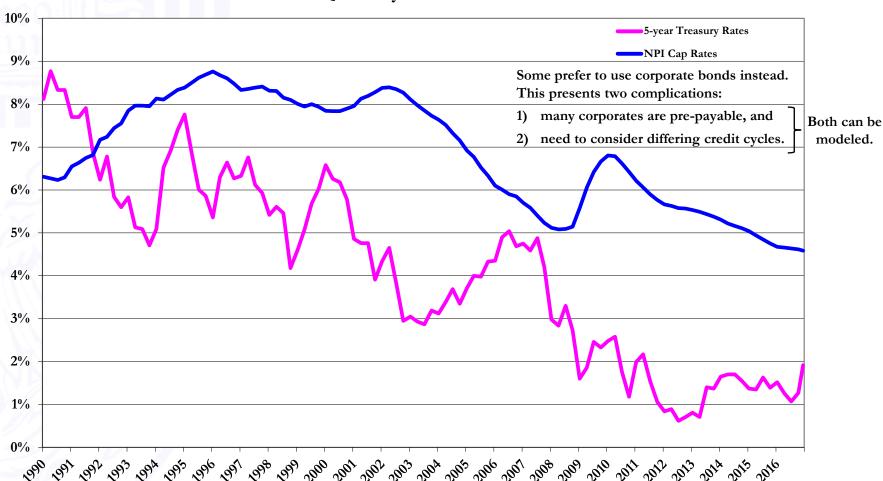
though analysts' ability to time the onset of deflation has proved illusive." {emphasis added}

Alan Greenspan, "The Crisis," Brooking Institute working paper, April 15, 2010.

NCREIF Index - Market Values, Rescaled NOI and Capitalization Rates Based on a \$100 Investment for the Period 1978 through (the Second Quarter of) 2017

CHICAGO BOOTH

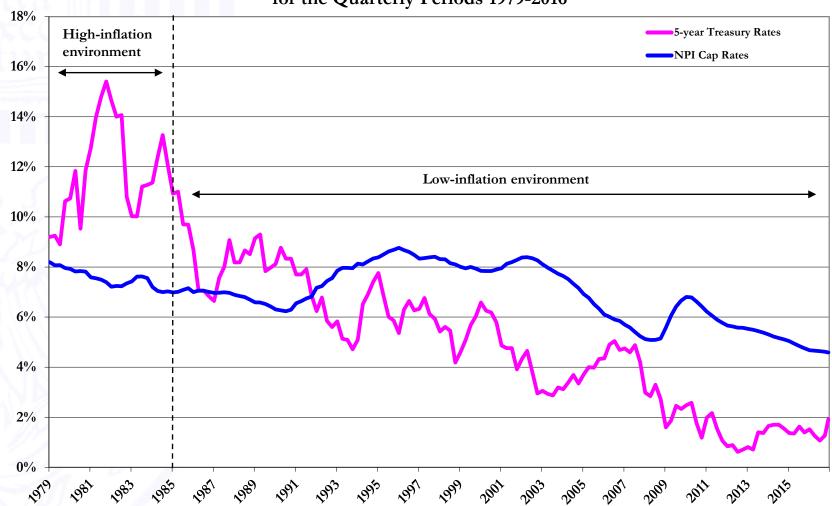
Some Thoughts on Real Estate Pricing: Agenda


- Context:
 - "Bubble" pricing?
 - Past bubbles
 - Greenspan's definition of a bubble
- ► The Spread between Interest Rates and Cap Rates:
 - Historical perspective including inflation's role
 - Interest rates v. cash-flow yields
 - Tilting your portfolio: bonds v. real estate
 - Impacts of shifting capitalization rates
- ► How Real Estate Ought to be Priced:
 - What do I want v. How will it be generated?
 - TIPS market □ real-return requirements
 - Current capitalization rates v. history
- ► Addendum: Forward (Interest & Inflation) Rates

Interest Rates v. Cap Rates: Short-Term Perspective

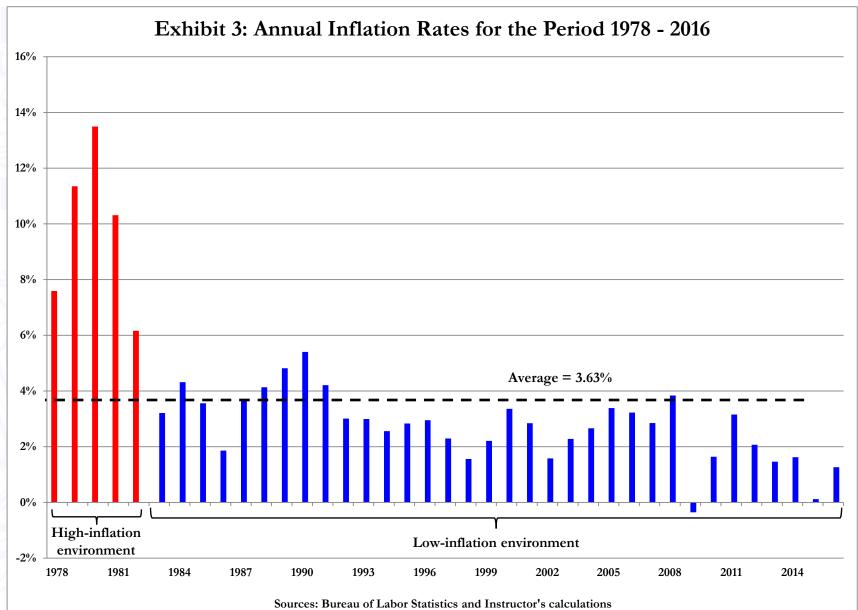
• If you only look at a low-inflation era, you might conclude the two are inexorably linked:

Exhibit 1: Comparison of 5-year US Treasury Rates to NCREIF Cap Rates for the Quarterly Periods 1990-2016

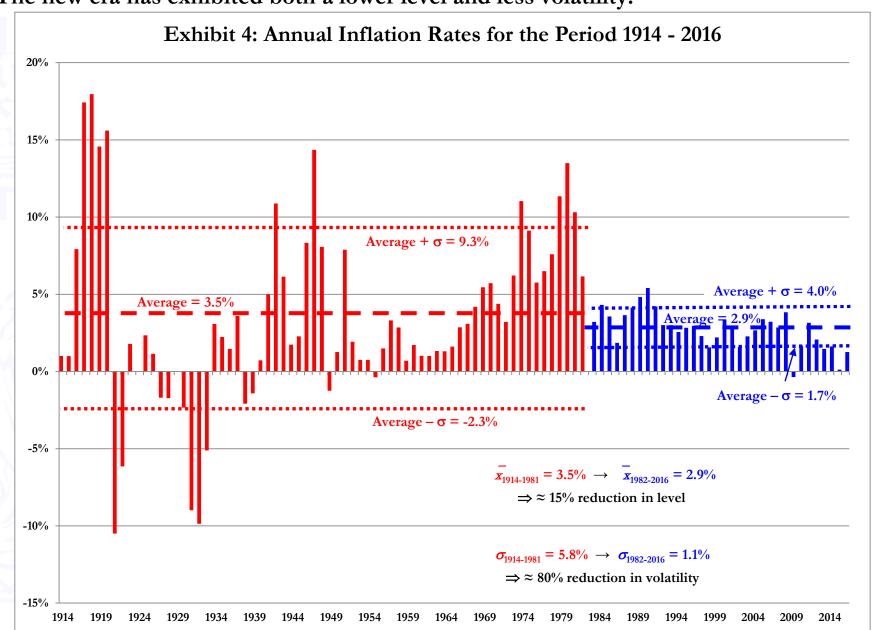


Interest Rates v. Cap Rates: Long-Term Perspective

• The linkage is broken when looking at a longer era:

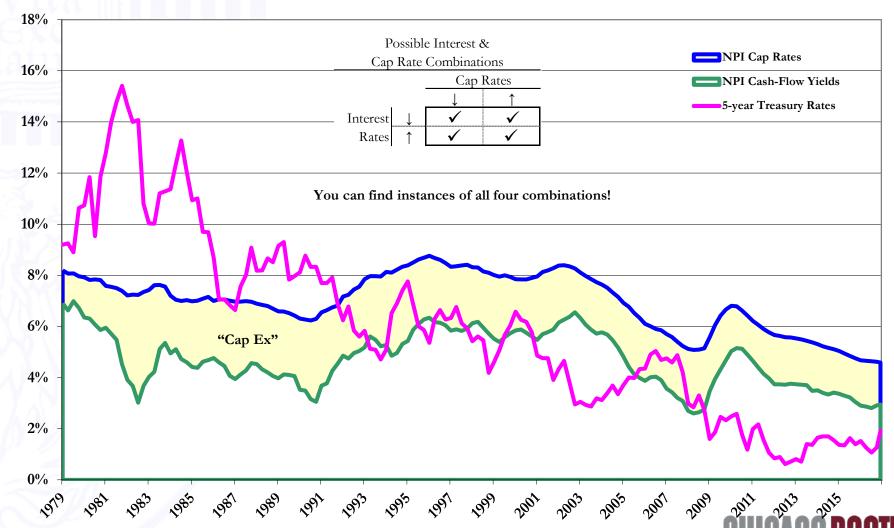

Exhibit 2: Comparison of 5-year US Treasury Rates to NCREIF Cap Rates for the Quarterly Periods 1979-2016

Inflation Rates Over the Life of NCREIF Index

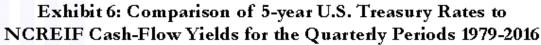

The Reagan administration is said to have "broken the back" of inflation:

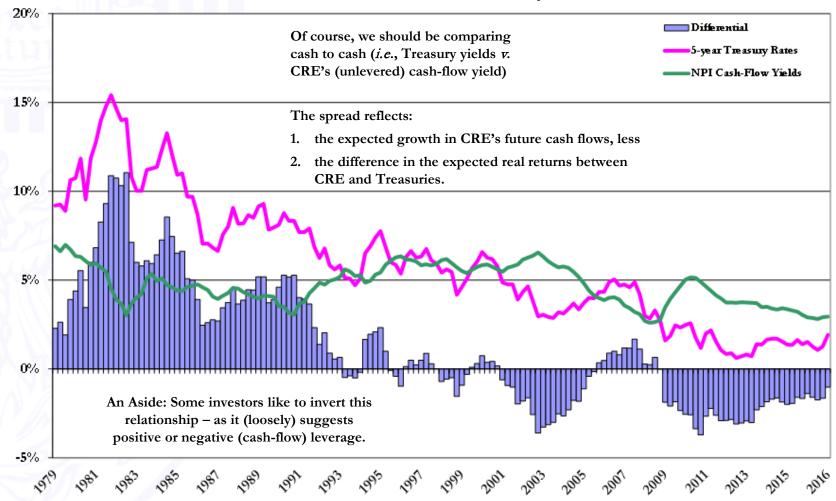
The (Very) Long View on Inflation Rates

The new era has exhibited both a lower level and less volatility:



Interest Rates v. RE's Cash-Flow Yields


• Any fair comparison between bonds & real estate must look at cash-flow yields:


Exhibit 5: Comparison of 5-year US Treasury Rates to NCREIF Cap Rates & Cash-Flow Yields for the Quarterly Periods 1979-2016

Interest Rates v. RE's Cash-Flow Yields (continued)

• Another look at (bonds & real estate) cash-flow yields:

Conceptual: Interest Rates v. Current Return

- •What does the difference (δ) between bond rates (i/P_0) and real estate's cash-flow yields (CF_1/P_0) imply?
- •Fundamentally, this is a comparison between a fixed-rate, nominalyield security and a variable-rate, real-yield security.
- •More specifically, the difference equals:
 - expected RE's growth (g) in cash flow less
 - the difference in:
 - RE's expected real return (r_{RE}) , and
 - Treasury bonds' expected real return (r_{TB}) .

Support: Interest Rates v. Cash-Flow Yields

- •Before considering the difference (δ) between bond rates (i/P_0) and real estate's cash-flow yields (CF_1/P_0), we need two relationships:
- The nominal (k) and real (r) returns on any asset are linked by:

$$k = (1+r)(1+\rho)-1$$

- where inflation (ρ) is the link between nominal and real returns.
- •The total (nominal) return on real estate is also given by:

$$k_{RE} = \frac{CF_1}{P_0} + g$$

- This assumes constant cap rates (an assumption we will revisit).
- •Let's use these relationships to examine δ

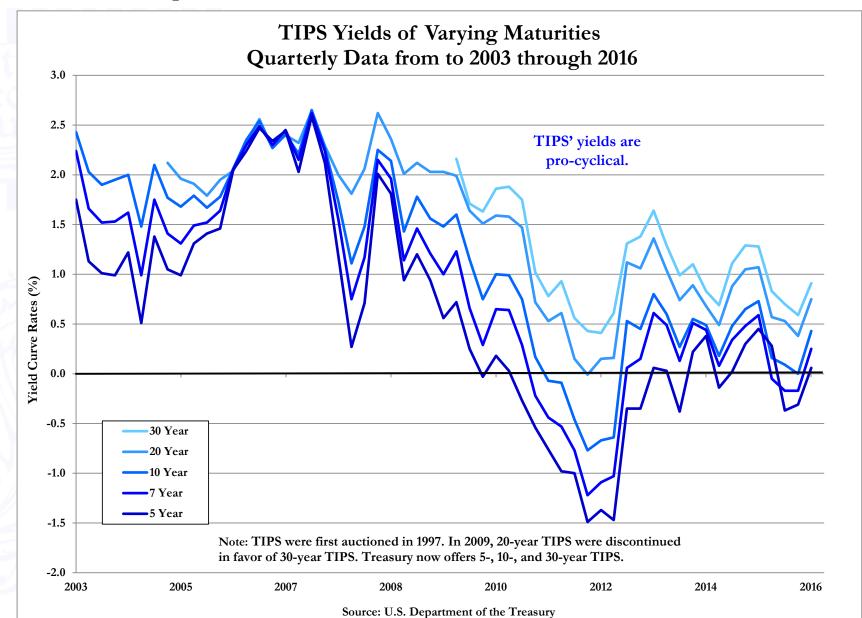
Technical: Interest Rates v. Cash-Flow Yields

Consider:

$$S = \frac{i}{P_0} - \frac{CF_1}{P_0}$$
Recall: $k_{RE} = CF_1/P_0 + g \rightarrow CF_1/P_0 = k_{RE} - g$

$$= \frac{i}{P_0} - (k_{RE} - g)$$
Rewrite such that $k = (1+r)(1+\rho) - 1$

$$= (1+r_{RE})(1+\rho) - 1 - [(1+r_{RE})(1+\rho) - 1 - g]$$


Eliminate & collect terms

$$\approx g - (r_{RE} - r_{TB})$$

An Aside: The Path of TIPS Rates

The real-return requirement on Treasuries is observable via the TIPS market:

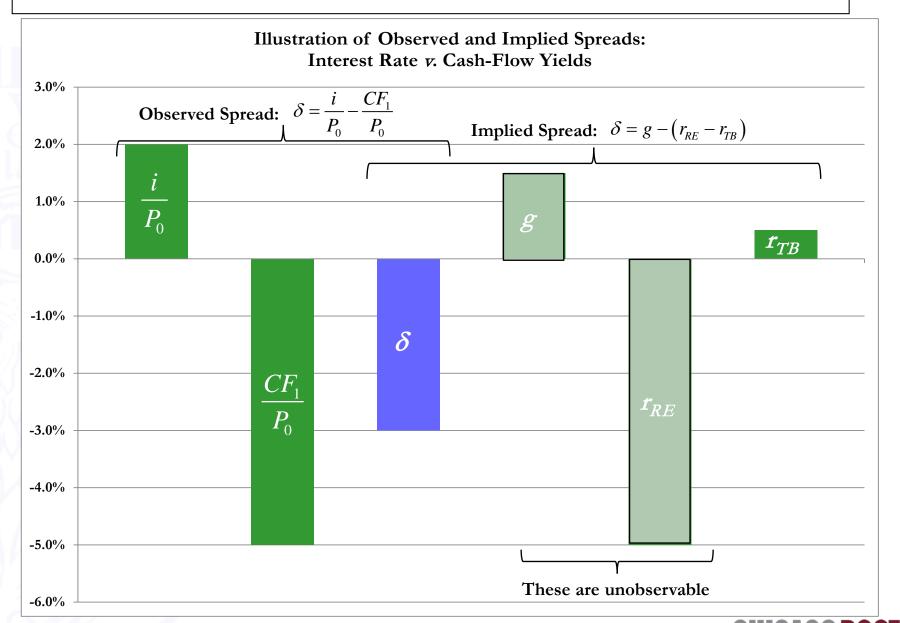
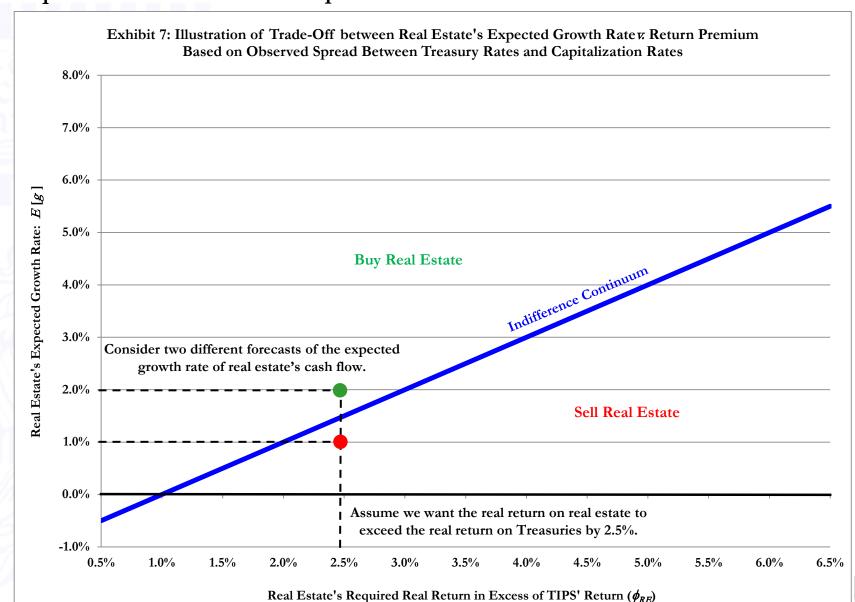


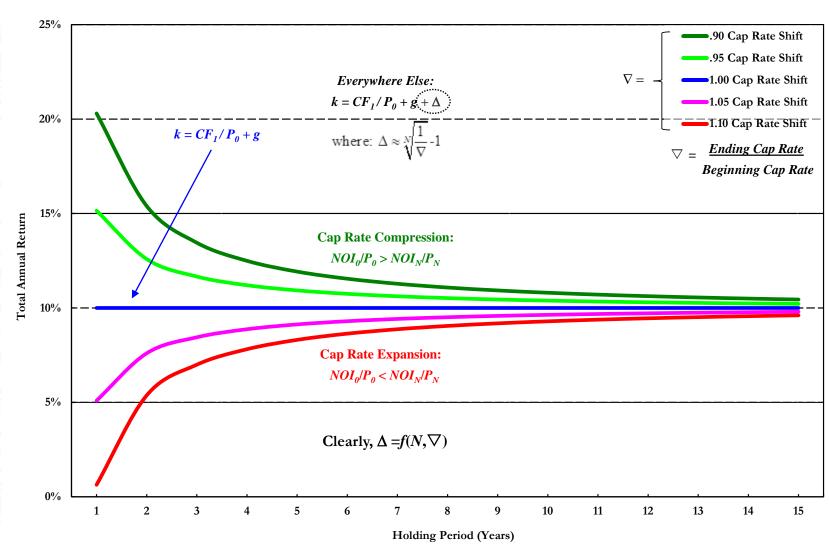
Illustration: Interest Rates v. Current Return

- •As an illustration, assume:
 - bond rates $(i/P_0) = 2.0\%$
 - real estate's cash-flow yields $(CF_1/P_0) = 5.0\%$
- :. the observed difference (δ) = 2.0% 5.0% = <3.0%>
- Further assume:
 - real estate's expected cash-flow growth (g) = 1.5%
 - real estate's real return $(r_{RE}) = 5.0\%$,
 - Treasury bond's real return $(r_{TB}) = 0.5\%$
- : the <u>implied</u> difference $(\delta) = 1.5\% (5.0\% 0.5\%) = <3.0\%>$
- •Also assumes that RE's growth rate equals the inflation rate $(g = \rho)$


Illustration: Interest Rates v. Current Return

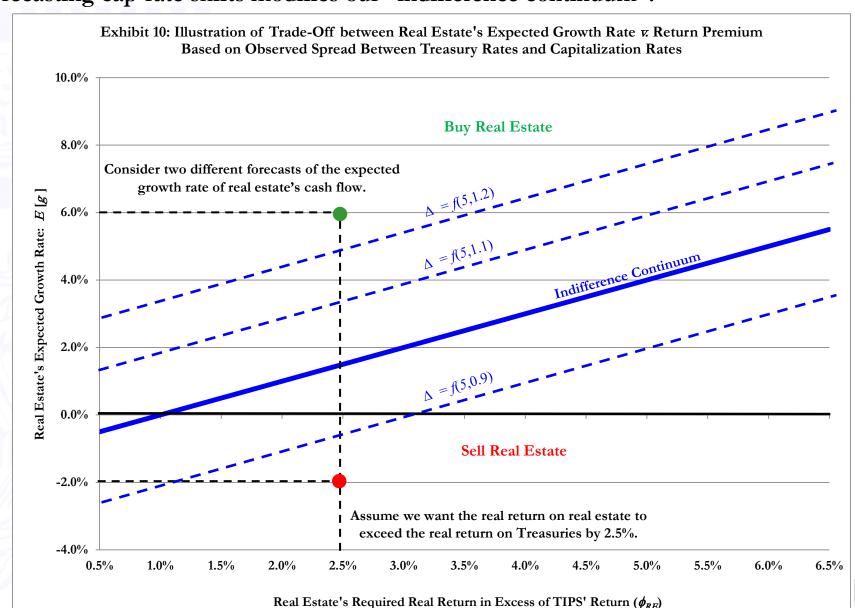
Portfolio Tilt Based on Estimates of Unobservables

One equation with two unknowns produces an "indifference continuum":



What About Cap-Rate Shifts?

- The prior analyses assume constant cap rates: $k = CF_1/P_0 + g$.
- Let's consider shifts (∇) :


Exhibit 8: Total Annual Return Based Upon Various Capitalization-Rate Shifts and Holding Periods

Portfolio Tilt Based with Cap-Rate Shifts

Forecasting cap-rate shifts modifies our "indifference continuum":

Another Digression: Realized Components of Return

- Expand our earlier return-generating equation: $k = |NOI_1/P_0 * \overline{b}| + |\lambda \rho| + \Delta + |\varepsilon|$.
- Substantial differences by property type:

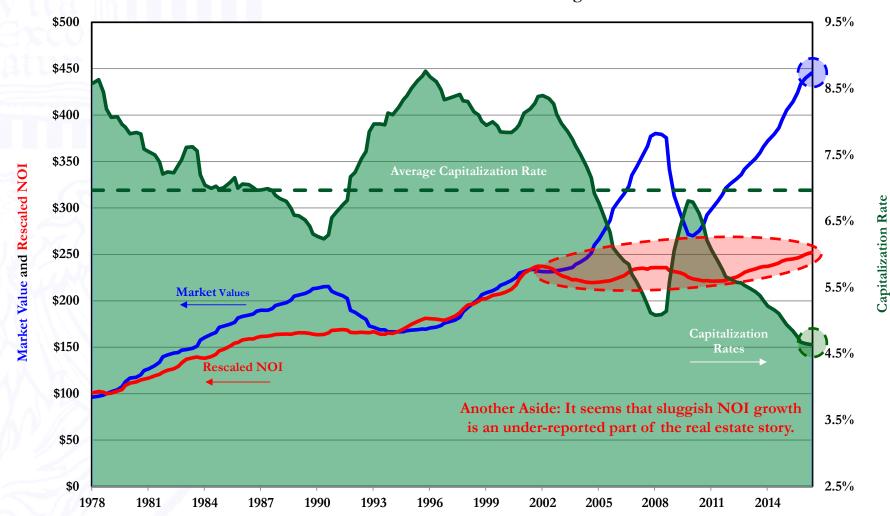
Exhibit 9: Annualized Components of Return by NPI Property Type for the Period 1978 through 2016

	Total		Office		Industrial		Retail	
	NPI	Apartment	CBD	Suburban	Warehouse	R&D/Flex	Shops	Malls
	(39 Years)	(39 Years)	(39 Years)	(39 Years)	(39 Years)	(39 Years)	(39 Years)	(34 Years
Components of Return:								
Initial Income Yield (NOI ₁ /P ₀)	8.51%	8.46%	8.92%	8.53%	7.74%	8.93%	8.11%	7.76%
Average Dividend Pay-out Ratio (\bar{b})	<u>67.1%</u>	80.4%	<u>64.0%</u>	61.8%	<u>68.5%</u>	<u>69.2%</u>	<u>74.6%</u>	<u>65.6%</u>
= Dividend Yield (CF ₁ /P ₀)	5.71%	6.80%	5.71%	5.27%	5.30%	6.17%	6.05%	5.09%
+ Earnings Growth (g)	<u>2.42%</u>	<u>2.84%</u>	<u>2.29%</u>	<u>1.42%</u>	<u>2.98%</u>	<u>2.28%</u>	<u>2.22%</u>	3.57%
Fundamental Return $(CF_1/P_0 + g)$	8.13%	9.64%	7.99%	6.70%	8.28%	8.45%	8.26%	8.66%
Shift in Capitalization Rates (Δ)	0.54%	0.43%	0.83%	0.51%	0.41%	0.39%	0.36%	0.60%
+ Other Effects	0.62%	0.48%	0.89%	0.50%	1.08%	<u>0.61%</u>	0.82%	0.98%
NCREIF Total Return – Nominal (k)	<u>9.29%</u>	<u>10.55%</u>	<u>9.72%</u>	<u>7.71%</u>	<u>9.77%</u>	<u>9.44%</u>	<u>9.45%</u>	10.23%
NCREIF Total Return – Real (r)	<u>5.60%</u>	<u>6.83%</u>	<u>6.02%</u>	4.08%	<u>6.07%</u>	<u>5.76%</u>	<u>5.76%</u>	<u>7.34%</u>
Inflationary Characteristics:								
Inflation (ρ)	3.49%	3.49%	3.49%	3.49%	3.49%	3.49%	3.49%	2.69%
NOI Inflation Pass-Thru Rate (λ)	69.5%	81.5%	65.5%	40.8%	85.4%	65.3%	63.5%	132.5%
Pricing Characteristics:								
Beginning Capitalization Rate (NOI_0/P_0)	8.19%	7.98%	8.71%	8.35%	7.42%	8.84%	7.94%	7.49%
Ending Capitalization Rate (NOI_N/P_N)	4.59%	4.48%	3.98%	4.96%	4.90%	5.50%	5.13%	4.31%
Risk Measure:								
Annual Volatility (σ)	7.62%	7.80%	11.45%	9.08%	7.38%	8.82%	6.17%	7.41%

Note: Nearly 90% of long-run returns determined by the Fundamental Return.

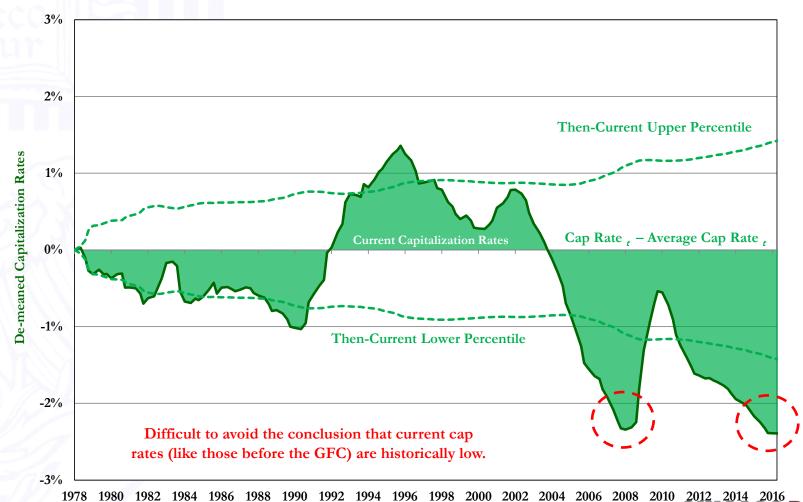
Some Thoughts on Real Estate Pricing: Agenda

- Context:
 - "Bubble" pricing?
 - Past bubbles
 - Greenspan's definition of a bubble
- ► The Spread between Interest Rates and Cap Rates:
 - Historical perspective including inflation's role
 - Interest rates v. cash-flow yields
 - Tilting your portfolio: bonds v. real estate
 - Impacts of shifting capitalization rates
- ► How Real Estate Ought to be Priced:
 - What do I want v. How will it be generated?
 - TIPS market

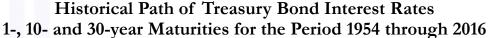

 real-return requirements
 - Current capitalization rates v. history
- ► Addendum: Forward (Interest & Inflation) Rates

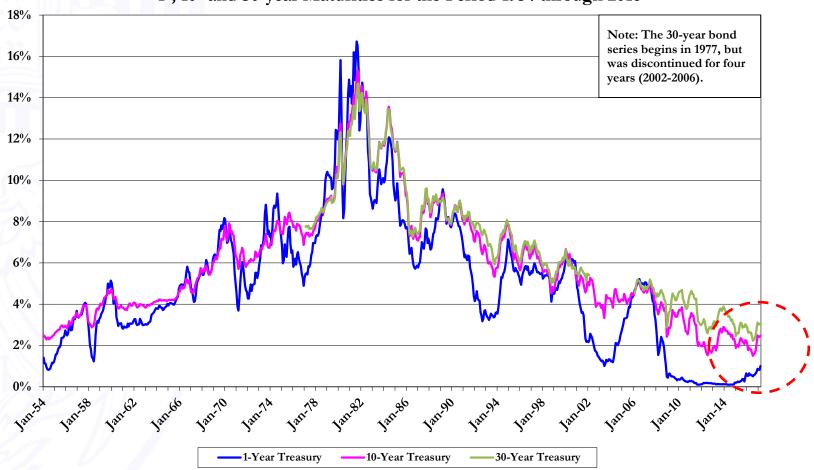
The Path of Values & Cap Rates

High prices and low cap rates have many of us apprehensive:


Exhibit 11: NCREIF Index - Market Values, Rescaled NOI and Capitalization Rates Based on a \$100 Investment for the Period 1978 through 2016

A Statistical Look at Capitalization Rates


• Examining the evolving mean, x, and volatility, σ , of capitalization rates:


Exhibit 12: NCREIF Index - Various Measures of De-Meaned Capitalization Rates for the Period 1978 through 2016

Possible Explanation: Path of Interest Rates?

• Of course, we rationalize cap rates based on interest rates:

What Is the Appropriate Cash-Flow Yield?

• WANT: Recall the link between the nominal (k) and real (r) returns:

$$k_{RE} = (1 + r_{RE})(1 + \rho) - 1$$

• How: Ignoring cap-rate shifts (∇ =1.0), total return is also given by:

$$k_{RE} = \frac{CF_1}{P_0} + g = \frac{CF_1}{P_0} + \lambda \rho \qquad \{ \text{Recall: } g = \lambda \rho \}$$

•Let's set these equations to one another (and solve for CF_1/P_0):

What We Want
$$\frac{CF_1}{P_0} = r_{RE} \left(1 + \rho\right) + \rho \left(1 - \lambda\right)$$
Real return, grossed up for inflation
$$\frac{CF_1}{P_0} = r_{RE} \left(1 + \rho\right) + \rho \left(1 - \lambda\right)$$
Real return, grossed up for inflation portion of inflation

Variations on the Appropriate Cash-Flow Yield

•Recall the appropriate cash-flow yield:

$$\frac{CF_1}{P_0} = r_{RE} \left(1 + \rho \right) + \rho \left(1 - \lambda \right)$$

- Consider the first of two cases:
- 1. If markets are in equilibrium ($\lambda = 1.0 \Rightarrow g = \rho$), then:

$$\frac{CF_0\left(1+\rho\right)}{P_0} = r_{RE}\left(1+\rho\right) + \rho\left(1-1\right) \qquad \text{{Recall: } } CF_1 = CF_0\left(1+\lambda\rho\right)\text{{}}$$

$$\frac{CF_0}{P_0} = r_{RE}$$
Eliminate and collect terms

• So, if markets are in equilibrium, then real estate's real return is its trailing cash-flow yield (CF_0/P_0) , <u>irrespective</u> of the inflation rate!

Variations on the Appropriate Cash-Flow Yield

•Again, recall the appropriate cash-flow yield:

$$\frac{CF_1}{P_0} = r_{RE} \left(1 + \rho \right) + \rho \left(1 - \lambda \right)$$

- Consider the second of two cases:
- 2. Markets generally talk in terms of cap rates, so let's restate:

$$\frac{CF_1}{P_0} = \frac{NOI_1(\overline{b})}{P_0} = r_{RE}(1+\rho) + \rho(1-\lambda)$$

$$\frac{NOI_1}{P_0} = \frac{r_{RE}(1+\rho) + \rho(1-\lambda)}{\overline{b}}$$
Restate terms

•If history is a fair guide to the future, then multiply the appropriate cashflow yield by 3/2 (i.e., $\bar{b} \approx 2/3$) in order to find the appropriate capitalization rate.

Likely Real Returns in the Current Environment

• Recall the appropriate capitalization rate and solve for r_{RE} :

$$\frac{NOI_{1}(\overline{b})}{P_{0}} = \frac{r_{RE}(1+\rho)+\rho(1-\lambda)}{\overline{b}}$$

$$r_{RE} = \frac{\frac{NOI_{1}}{\overline{b}}-\rho(1-\lambda)}{(1+\rho)}$$
Restate terms

• Consider some plausible parameterization:

$$r_{RE} = \frac{(4.5\%)(67\%) - .02(1 - .7)}{(1 + .02)} \approx 2.5\%$$

Recall: $\overline{r}_{RE} \approx 5.6\%$

However, today's 5-year TIPS ≈ 0.2%

Valuations & Interest Rates: Conceptual

- Some investors naively assume:
 - Interest Rates ↑ → Asset Prices ↓
- •However, a change in interest rates = $f(\bullet)$:
 - a change in inflation (ρ) expectations, and/or
 - a change in the real return (r) requirement.
- •These two factors can have very different impacts on asset values:
 - •Inflation $\uparrow \rightarrow$ Interest Rates $\uparrow \rightarrow$ Asset Prices \uparrow
 - •Real Return ↑ → Interest Rates ↑ → Asset Prices ↓
- •Inflationary increases may be favorable for real estate
- •Real return increases may be unfavorable for most all asset classes, including real estate

Valuations & Interest Rates: Technical

•Restate earlier equation(s) in terms of price (P_0) :

$$P_0 = \frac{CF_0(1+\lambda\rho)}{(1+r_{RE})(1+\rho)-1-\lambda\rho}$$

•Take the derivative when in equilibrium and when not:

When $\lambda = 1$

$\frac{\partial P_0}{\partial \rho} = 0$

When $\lambda \neq 1$

$$\frac{\partial P_0}{\partial \rho} = \frac{-CF_0 (1 + r_{RE})(1 - \lambda)}{\left[(1 + r_{RE})(1 + \rho) - 1 - \lambda \rho \right]^2}$$

When markets are not in equilibrium (and $\lambda < 1$), property values fall when inflation (ρ) increases.

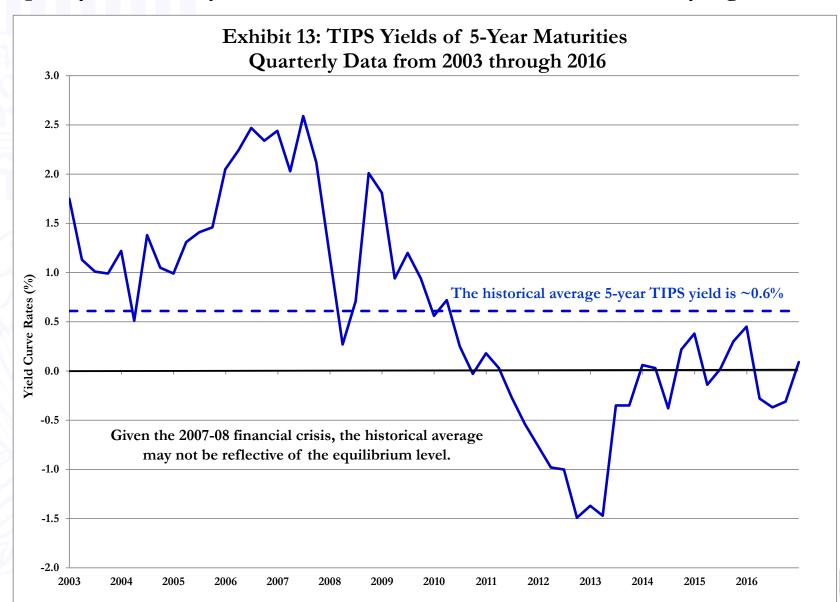
This is our earlier result;

prices are unaffected.

$$\frac{\partial P_0}{\partial r_{RE}} = \frac{-CF_0}{r_{RE}^2}$$

$$\frac{\partial P_0}{\partial r_{RE}} = \frac{-CF_0(1+\rho)(1+\lambda\rho)}{\left[(1+r_{RE})(1+\rho)-1-\lambda\rho\right]^2}$$

The effect is worse when markets are not in equilibrium (and
$$\lambda < 1$$
).


$$\frac{\partial P_0}{\partial \lambda} = \frac{CF_0 \left(1 + r_{RE}\right) \left(1 + \rho\right) \rho}{\left[\left(1 + r_{RE}\right) \left(1 + \rho\right) - 1 - \lambda \rho\right]^2}$$

Property values rise (fall) as λ improves (worsens).

Importance of TIPS Rates: Historical Path

Given pro-cyclical TIPS yields, will we see those rates move substantially higher?

Schizophrenic Relationship with TIPS Rates?

No statistically reliable relationship between RE's real yield and TIPS rates:

Exhibit 14: A Comparison of Realized Real Returns on U.S. Treasury and the NCREIF Property Index for Various Time Periods

	1978-2016	1987-2006	2003-2016
	(Entire History)	(Low Inflation	(TIPS History)
		& Pre-Crisis)	
NCREIF Property Index	5.79%	5.37%	7.36%
U.S. Treasury Bonds	<u>5.70%</u>	<u>5.86%</u>	4.53%
Mean Difference (ϕ_{RE})	<u>0.09%</u>	<u>-0.49%</u>	<u>2.83%</u>
Volatility of Difference	<u>14.70%</u>	<u>12.85%</u>	<u>14.08%</u>
Standard Error	<u>2.35%</u>	<u>2.87%</u>	<u>3.76%</u>

Recall that these spreads ignores fees and illiquidity of CRE.

None of these differences are statistically significant.

.. History is not much of a guide and we are left with trying to determine *ex ante* as to the appropriate spread (perhaps the most-recent period is the best indication).

- If you are a long-term, low-levered CRE investor, these deviations matter little.
- So, these asset bubbles matter more to:
 - Long-term, high-levered investors particularly those with short-term debt maturities (e.g., Macklowe's EOP | Manhattan*) and/or poorly laddered maturities (e.g., pre-crash GGP v. SPG).
 - Short-term investors (e.g., value-add & opp funds, developers, etc.).
 - High-leverage, high-yield lenders particularly those with levered balance sheets (e.g., Blackstone mortgage REIT, Colony Capital debt funds, etc.).
 - Government agencies (e.g., Fannie, Freddie, HUD, Fed, etc.):
 - o with exposure to high-leverage borrowers, and
 - o who become the "lenders of last resort" in a downturn.

^{*} Aggravated by \$1 billion recourse bridge loan.

Concluding Remarks

- We have looked at two key aspects of real estate pricing:
- First, the spread between interest rates and cap rates was examined:
 - The former represents a riskless, nominal-yield, fixed-rate security,
 While the latter represents a risky, real-yield, real-yield security.
 - The difference represents the market's consensus view on: $\delta = g (r_{RE} r_{TB})$
 - Investors tilt their portfolios, depending on how their views differs from the consensus.
- Second, the appropriate cap rate depends on balancing what and how:

Real return, grossed Uncompensated up for inflation portion of inflation
$$\frac{NOI_1}{P_0} = \frac{r_{RE} (1+\rho) + \rho (1-\lambda)}{\overline{b}}$$

- When markets are in equilibrium ($\lambda = 1$), changes in inflation (ρ) have no effect.
- Regardless of market equilibrium, changes in the real return (r_{RE}) have a large effect.
- The impact (Δ) of cap-rate shifts (∇) can be approximated by:

$$\Delta = f(N, \nabla) \approx \sqrt[N]{\frac{1}{\nabla}} - 1$$

Some Thoughts on Real Estate Pricing: Agenda

- Context:
 - "Bubble" pricing?
 - Past bubbles
 - Greenspan's definition of a bubble
- ► The Spread between Interest Rates and Cap Rates:
 - Historical perspective including inflation's role
 - Interest rates v. cash-flow yields
 - Tilting your portfolio: bonds v. real estate
 - Impacts of shifting capitalization rates
- ► How Real Estate Ought to be Priced:
 - What do I want v. How will it be generated?
 - TIPS market □ real-return requirements
 - Current capitalization rates v. history
- ► Addendum: Forward (Interest & Inflation) Rates

Today's Yield Curve & Future Interest Rates

•The "expectations theory" of future interest rates:

Madaanidaa	Dodo]	i nen:
<u>Maturity</u>	<u>Rate</u>	The implied one-year
1 year	2.0%	interest rate in one year
2 years	2.5%	is expected to be $\sim 3.0\%$

•That is, bond investors are assumed to be indifferent between:

$$(1 + .02) (1 + x) = (1 + .025)^2 \rightarrow x \approx .03$$

Holding the 1-year security and "rolling over" to 1- year security in the second year

Holding the 2-year security to maturity

Today's Yield Curve & Future Interest Rates

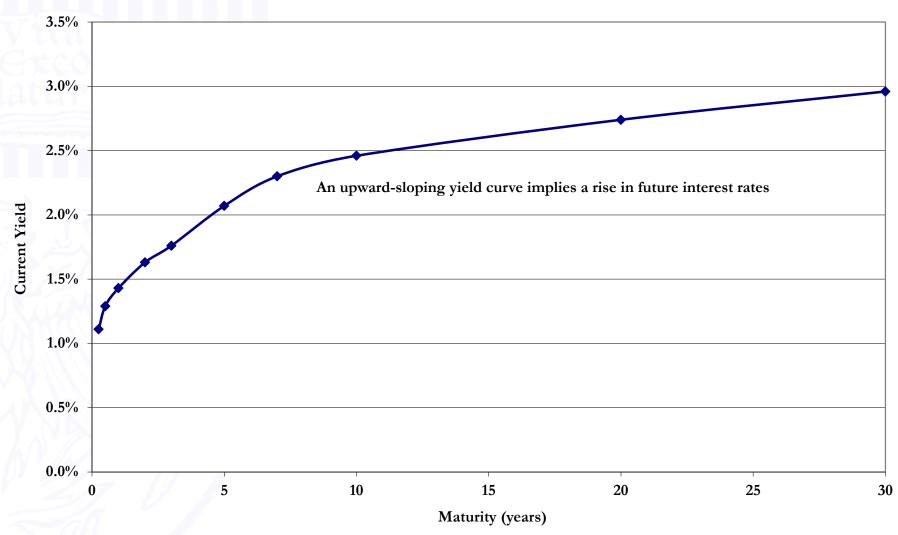
Consider one more period:

Maturity	<u>Rate</u>	Then:
1 year	2.00%	The implied one-year
2 years	2.50%	interest rate in two years
3 years	2.75%	is expected to be $\sim 3.25\%$

That is, bond investors are assumed to be indifferent between:

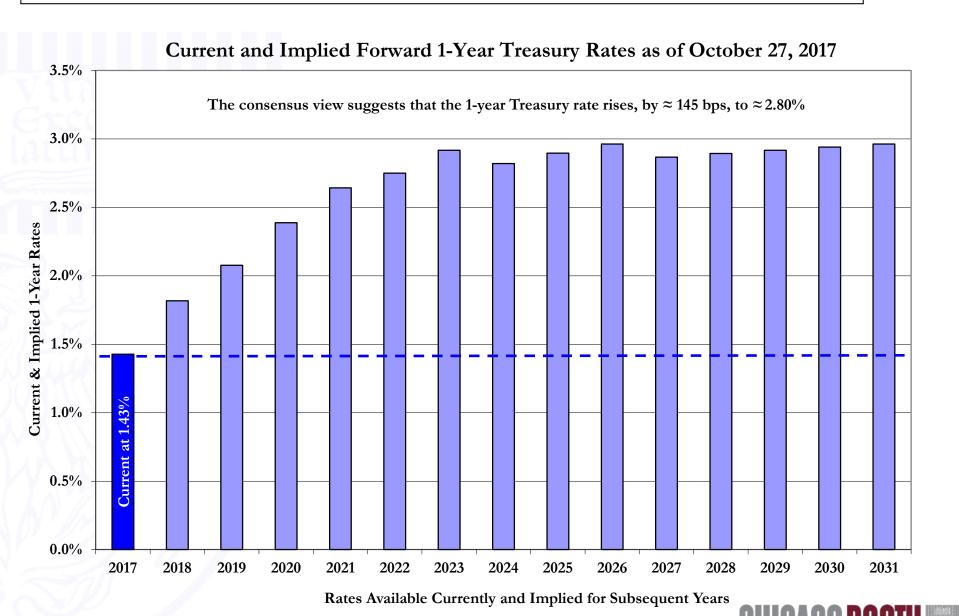
$$(1 + .025)^2 (1 + y) = (1 + .0275)^3 \implies y \approx .0325$$

Holding the 2-year security and "rolling over" to 1- year security in the third year

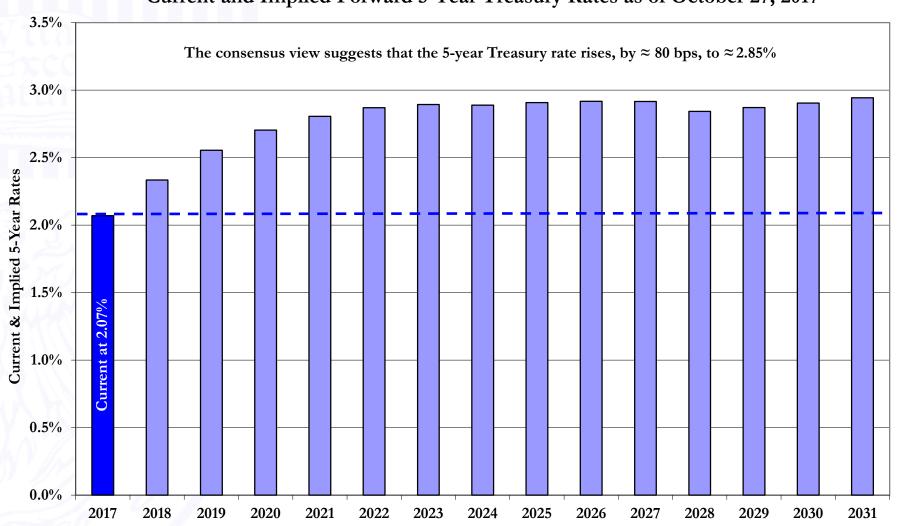

Holding the 3-year security to maturity

This approach can be extended to the entirety of today's yield curve

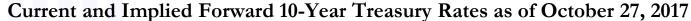
Today's Yield Curve



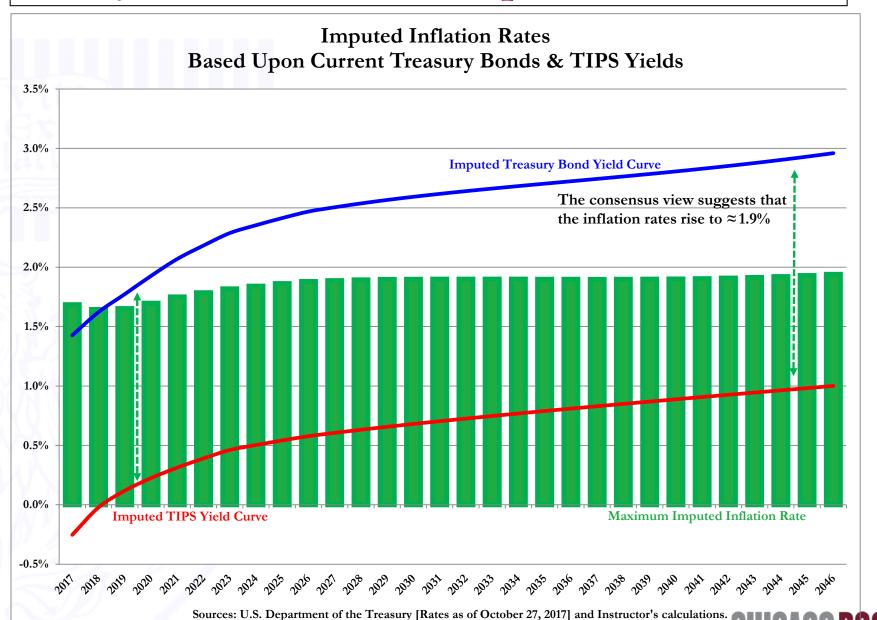
Sources: US Department of the Treasury and Instructor's calculations.

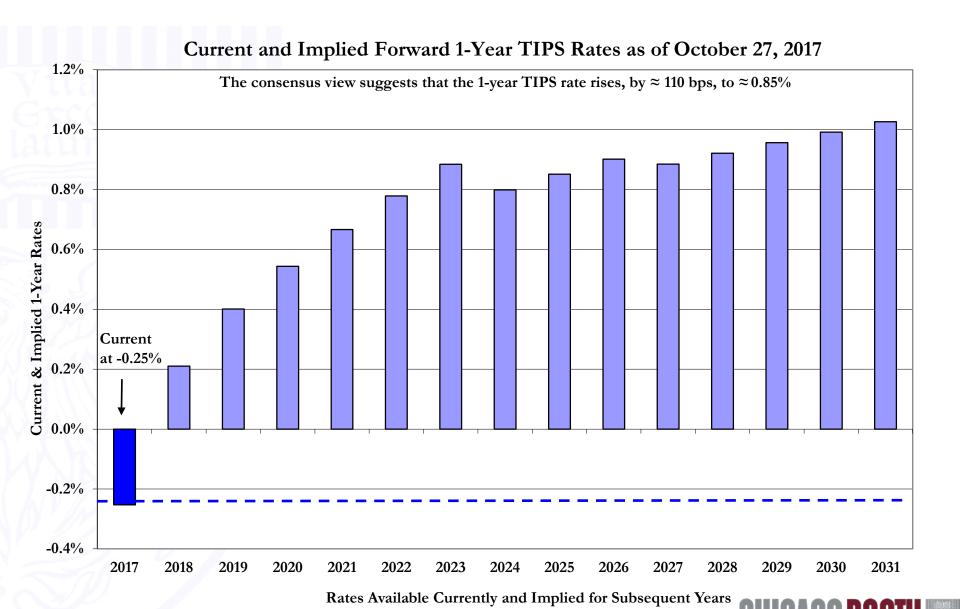


Market's View of Expected Future One-Year Treasury Rates

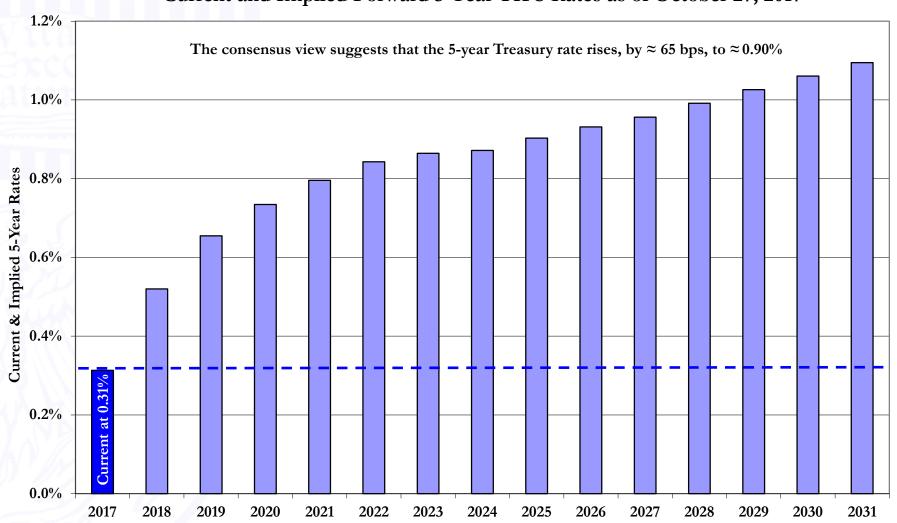

Market's View of Expected Future Five-Year Treasury Rates

Current and Implied Forward 5-Year Treasury Rates as of October 27, 2017


Market's View of Expected Future Ten-Year Treasury Rates

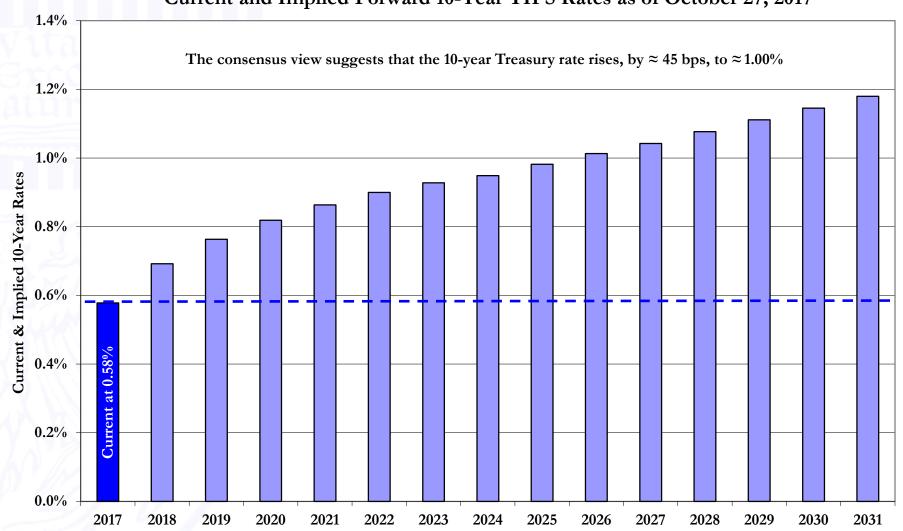


Today's Yield Curve → **Expected Inflation**



Market's View of Expected Future One-Year TIPS Rates

Market's View of Expected Future Five-Year TIPS Rates


Current and Implied Forward 5-Year TIPS Rates as of October 27, 2017

Market's View of Expected Future Ten-Year TIPS Rates

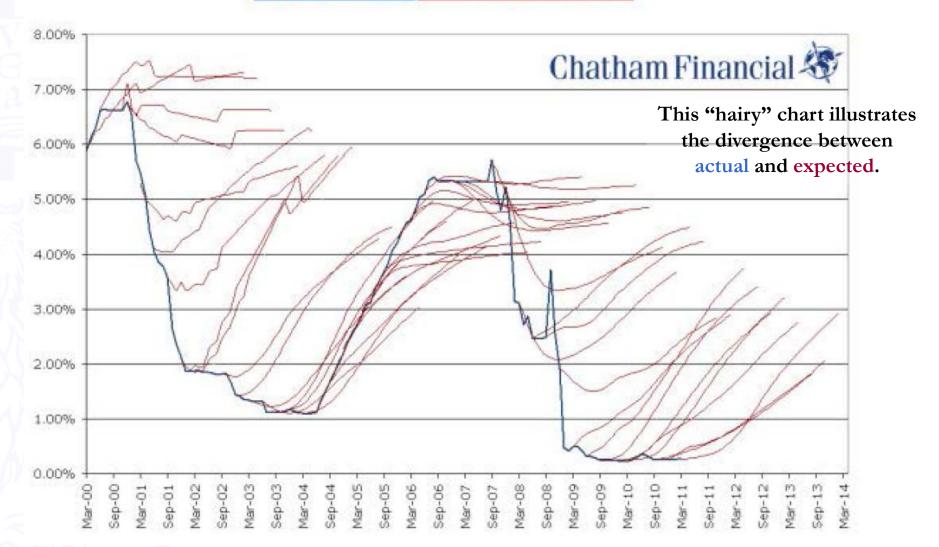
Today's Yield Curve & Future Cap Rates

What if the 5-years TIPS' rate increases by 65 basis point?

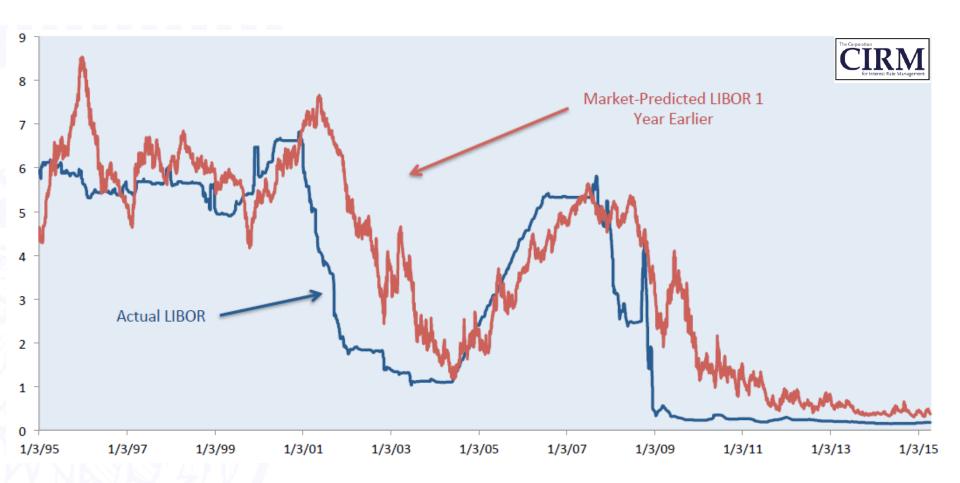
Let's assume that cap rates increase by 75 basis points.

Recall:
$$P_0 = \frac{CF_0(1+\lambda\rho)}{(1+r_{RE})(1+\rho)-1-\lambda\rho}$$
 This is our earlier restatement of the cash-flow yield

If and when that repricing occurs, real estate values will fall by 20%!


However: 1) the impact is always difficult to time, and 2) the adverse impact on total returns is a f(holding period):

	Cap-Rate
Holding	Shift
Period	Effect
1	-20.00%
2	-10.56%
3	-7.17%
4	-5.43%
5	-4.36%
:	
10	-2.21%


Caveat: Market's View Is Often Wrong

Actual 1m Libor vs. Historical Forward Curves

A Similar Perspective on Market's Omnipotence

This chart also illustrates the divergence between actual and expected.

Market-predicted LIBOR rate exceeded the actual by 73 bps, on average.

A Similar Perspective: Long-Term (10-Year) Treasuries

Sources: Matthew C. Klein, "Greenspan's Bogus 'Conundrum'," FT Alphaville, September 3, 2015 and referenced in John Cochrane's The Grumpy Economist blog, September 16, 2015.

Cautionary Note

- If you are really good at forecasting future interest rates:
 - Get out of the real estate business!
 - Get into the bond-trading business:
 - > sit in your pajamas,
 - > trade from home for < 1 hour/day, and
 - hit the beach (golf course, bike trails, etc.) the rest of your day!

