"Some Thoughts on Real Estate Pricing"

Joseph L. Pagliari, Jr.
Clinical Professor of Real Estate
October 31, 2017
$11^{\text {th }}$ Annual Chicago Booth Real Estate Conference Chicago, Illinois

Some Thoughts on Real Estate Pricing: Agenda

- Context:
" "Bubble" pricing?
- Past bubbles
- Greenspan's definition of a bubble
- The Spread between Interest Rates and Cap Rates:
- Historical perspective - including inflation's role
- Interest rates v. cash-flow yields
- Tilting your portfolio: bonds v . real estate
- Impacts of shifting capitalization rates
- How Real Estate Ought to be Priced:
- What do I want v . How will it be generated?
- TIPS market \square real-return requirements
- Current capitalization rates v. history
- Addendum: Forward (Interest \& Inflation) Rates

Is CRE in "Bubble" Territory?

- How should we view the level of CRE prices?

Green Street Property Sector Indices

Property sector indices are indexed to 100 at their ' 07 peaks.
Source: Green Street Advisors, Commercial Property Price Index, October 10, 2017.

"Bubbles" \leftarrow Easy to Spot, After They Bust

- Finance has a long history of asset bubbles, dating as far back as at least:
- 1637: Dutch tulip mania
- 1711: British South Sea bubble
- 1763: Mississippi Land Company
- But, of course, bubbles are easily spotted after they burst!
- Before they burst, there are simply disagreements about the likely path of future prices.
- This is the essence of any debate about current prices:
$>$ Have prices strayed too far from some sense of "fundamental" value?

The Debate About Asset Prices

- In finance (real estate or otherwise), the debate about asset prices generally falls into three possible explanations:
Rational $\begin{cases}\text { 1. "This time is different" - there has been a shift in some } \\ \text { underlying structural factor(s) [e.g., globalization, legislation, } \\ \text { socio-economic, political, etc.]. }\end{cases}$

2. "Noise" - simply some random fluctuations (with the mistaken impression of trend).

Irrational - 3. "Animal spirits" - a pattern, driven by excessive optimism (a "bubble") or pessimism, which is about to reverse itself.

More Recent Examples \leftarrow Where Were You?

- Let's recall three more-recent examples:
- Late 1990s: San Francisco office rents
- Mid 2000s: (U.S.) Home prices
- Mid 2000s: (U.S.) Commercial real estate prices
- As you consider these examples, candidly ask yourself:
\rightarrow Did you recognize the bubble before it burst?

It's easy to consider yourself an expert, after the fact!

- If so, did you have the (financial) courage to act on it?
- Acting on the recognition of the bubble can take two forms:

1. Avoidance of over-priced assets \leftarrow risk-averting strategy
2. Exploit the over-priced assets
\leftarrow risk-seeking strategy

Using the correction to your advantage. As one example, consider the brilliance and the guts displayed in The Big Short in which certain hedge-fund managers: a) recognized the bubble in home prices, b) understood the exposure in the junior tranches of sub-prime debt and c) invented credit-default swaps on these junior tranches. [CDS existed previously, but not on sub-prime debt.]

Greenspan's Definition of a Bubble

NCREIF Index - Market Values, Rescaled NOI and Capitalization Rates Based on a $\$ 100$
Investment for the Period 1978 through (the Second Quarter of) 2017

Some high-yield funds tout that the possible repricing of CRE makes the high-yield safer than equity, but with higher (expected) return.
A point questioned in the accompanying $J P M$ article!

Abstract

"...I define a bubble as protracted period of falling risk aversion that translates into falling capitalization tates that decline measurably below their long term trendless averages. Falling capitalization rates propel one or more asset prices to unsustainable levels. All bubbles burst when risk aversion reaches its irreducible minimum, i.e., credit spreads approaching zero, though analysts' ability to time the onset of deflation has proved illusive." \{emphasis added\}

Cap- Rate Comparison:	
Current Cap Rate	4.62%
Long-Term (Trendless) Average	$\underline{7.05} \%$
$\quad \underline{\underline{-2.43}} \%$	

Some Thoughts on Real Estate Pricing: Agenda

- Context:
- "Bubble" pricing?
- Past bubbles
- Greenspan's definition of a bubble
- The Spread between Interest Rates and Cap Rates:
- Historical perspective - including inflation's role
- Interest rates v. cash-flow yields
- Tilting your portfolio: bonds v. real estate
- Impacts of shifting capitalization rates
- How Real Estate Ought to be Priced:
- What do I want v. How will it be generated?
- TIPS market \square real-return requirements
- Current capitalization rates v. history
- Addendum: Forward (Interest \& Inflation) Rates

Interest Rates v. Cap Rates: Short-Term Perspective

- If you only look at a low-inflation era, you might conclude the two are inexorably linked:

Exhibit 1: Comparison of 5-year US Treasury Rates to NCREIF Cap Rates
for the Quarterly Periods 1990-2016

Interest Rates v. Cap Rates: Long-Term Perspective

- The linkage is broken when looking at a longer era:

Exhibit 2: Comparison of 5-year US Treasury Rates to NCREIF Cap Rates
for the Quarterly Periods 1979-2016

Inflation Rates Over the Life of NCREIF Index

- The Reagan administration is said to have "broken the back" of inflation:

The (Very) Long View on Inflation Rates

- The new era has exhibited both a lower level and less volatility:

Exhibit 4: Annual Inflation Rates for the Period 1914-2016

Interest Rates v. RE's Cash-Flow Yields

- Any fair comparison between bonds $\&$ real estate must look at cash-flow yields:

Exhibit 5: Comparison of 5-year US Treasury Rates to NCREIF Cap Rates \& Cash-Flow Yields for the Quarterly Periods 1979-2016

Interest Rates v. RE's Cash-Flow Yields (continued)

- Another look at (bonds \& real estate) cash-flow yields:

Exhibit 6: Comparison of 5 -year U.S. Treasury Rates to NCREIF Cash-Flow Yields for the Quarterly Periods 1979-2016

Conceptual: Interest Rates v. Current Return

-What does the difference (δ) between bond rates $\left(i / P_{0}\right)$ and real estate's cash-flow yields $\left(C F_{1} / P_{0}\right)$ imply?
-Fundamentally, this is a comparison between a fixed-rate, nominalyield security and a variable-rate, real-yield security.
-More specifically, the difference equals:

- expected RE's growth (g) in cash flow less
- the difference in:
- RE's expected real return ($r_{R E}$), and
- Treasury bonds' expected real return $\left(t_{T B}\right)$.

$$
\boldsymbol{\delta}=\boldsymbol{g}-\left(r_{R E}-r_{T B}\right)
$$

Support: Interest Rates v. Cash-Flow Yields

-Before considering the difference (δ) between bond rates $\left(i / P_{0}\right)$ and real estate's cash-flow yields $\left(C F_{1} / P_{0}\right)$, we need two relationships:

- The nominal (k) and real (r) returns on any asset are linked by:

$$
k=(1+r)(1+\rho)-1
$$

- where inflation (ρ) is the link between nominal and real returns.
-The total (nominal) return on real estate is also given by:

$$
k_{R E}=\frac{C F_{1}}{P_{0}}+g
$$

- This assumes constant cap rates (an assumption we will revisit).
-Let's use these relationships to examine $\boldsymbol{\delta}$

Technical: Interest Rates v. Cash-Flow Yields

-Consider:

$$
\begin{aligned}
& \delta=\frac{i}{P_{0}}-\frac{C F_{1}}{P_{0}} \\
&=\frac{i}{P_{0}}-\left(k_{R E}-g\right) \\
&=\left(1+r_{T B}\right)(1+\rho)-1-\left[\left(1+r_{R E}\right)(1+\rho)-\mathcal{R}\right) \\
& \text { Recall: } k_{R E}=C F_{1} / P_{0}+g \rightarrow C F_{1} / P_{0}=k_{R E}-g \\
& \text { Rewite such that } k=(1+t)(1+\rho)-1
\end{aligned}
$$

Eliminate \& collect terms

$$
\approx g-\left(r_{R E}-r_{T B}\right)
$$

An Aside: The Path of TIPS Rates

- The real-return requirement on Treasuries is observable via the TIPS market:

Illustration: Interest Rates v. Current Return

- As an illustration, assume:
- bond rates $\left(i / P_{0}\right)=2.0 \%$
- real estate's cash-flow yields $\left(C F_{1} / P_{0}\right)=5.0 \%$
- \therefore the observed difference $(\delta)=2.0 \%-5.0 \%=<3.0 \%>$
- Further assume:
- real estate's expected cash-flow growth $(g)=1.5 \%$
- real estate's real return $\left(r_{R E}\right)=5.0 \%$,
- Treasury bond's real return $\left(r_{T B}\right)=0.5 \%$
- \therefore the implied difference $(\delta)=1.5 \%-(5.0 \%-0.5 \%)=<3.0 \%>$
-Also assumes that RE's growth rate equals the inflation rate $(\mathrm{g}=\rho)$

Illustration: Interest Rates v. Current Return

Portfolio Tilt Based on Estimates of Unobservables

- One equation with two unknowns produces an "indifference continuum":

What About Cap-Rate Shifts?

- The prior analyses assume constant cap rates: $k=C F_{1} / P_{0}+g$.
- Let's consider shifts (∇):

Exhibit 8: Total Annual Return Based Upon
Various Capitalization-Rate Shifts and Holding Periods

Portfolio Tilt Based with Cap-Rate Shifts

- Forecasting cap-rate shifts modifies our "indifference continuum":

Exhibit 10: Illustration of Trade-Off between Real Estate's Expected Growth Rate v. Return Premium
Based on Observed Spread Between Treasury Rates and Capitalization Rates

Another Digression: Realized Components of Return

- Expand our earlier return-generating equation: $k=N O I_{1} / P_{0} * \bar{b}+\lambda \rho+\Delta+\varepsilon$.
- Substantial differences by property type:

Exhibit 9: Annualized Components of Return by NPI Property Typefor the Period 1978 through 2016

		Apartment	Office		Industrial		Retail	
			CBD	Suburban	Warehouse	R\&D/Flex	Shops	Malls
	(39 Years)	(34 Years)						
Components of Return:								
Initial Income Yield ($\mathrm{NOI}_{1} / \mathrm{P}_{0}$)	8.51\%	8.46\%	8.92\%	8.53\%	7.74\%	8.93\%	8.11\%	7.76\%
x Average Dividend Pay-out Ratio (\bar{b})	67.1\%	80.4\%	64.0\%	61.8\%	68.5\%	69.2\%	74.6\%	65.6\%
$=$ Dividend Yield ($\left.C F_{1} / P_{0}\right)$	5.71\%	6.80\%	5.71\%	5.27\%	5.30\%	6.17\%	6.05\%	5.09\%
+ Earnings Growth (g)	2.42\%	2.84\%	2.29\%	1.42\%	2.98\%	2.28\%	2.22\%	3.57\%
\Longrightarrow Fundamental Return $\left(C F_{1} / P_{0}+g\right)$	8.13\%	9.64\%	7.99\%	6.70\%	8.28\%	8.45\%	8.26\%	8.66\%
+ Shift in Capitalization Rates (Δ)	0.54\%	0.43\%	0.83\%	0.51\%	0.41\%	0.39\%	0.36\%	0.60\%
+ Other Effects	0.62\%	$\underline{0.48 \%}$	0.89\%	0.50\%	1.08\%	0.61\%	0.82\%	0.98\%
$=$ NCREIF Total Return - Nominal (k)	$\underline{\underline{9.29 \%}}$	10.55\%	$\underline{\underline{9.72 \%}}$	$\underline{\underline{7.71 \%}}$	$\underline{\underline{9.77 \%}}$	$\underline{\underline{9.44 \%}}$	$\underline{\underline{9.45 \%}}$	$\underline{\underline{10.23 \%}}$
NCREIF Total Return - Real (r)	$\underline{\underline{5.60 \%}}$	$\underline{\underline{6.83 \%}}$	6.02\%	$\underline{4.08 \%}$	$\underline{\underline{6.07 \%}}$	5.76\%	5.76\%	7.34\%
Inflationary Characteristics:								
Inflation (ρ)	3.49\%	3.49\%	3.49\%	3.49\%	3.49\%	3.49\%	3.49\%	2.69\%
NOI Inflation Pass-Thru Rate (λ)	69.5\%	81.5\%	65.5\%	40.8\%	85.4\%	65.3\%	63.5\%	132.5\%
Pricing Characteristics:								
Beginning Capitalization Rate ($\mathrm{NOI}_{0} / \mathrm{P}_{0}$)	8.19\%	7.98\%	8.71\%	8.35\%	7.42\%	8.84\%	7.94\%	7.49\%
Ending Capitalization Rate (NOI_{N} / P_{N})	4.59\%	4.48\%	3.98\%	4.96\%	4.90\%	5.50\%	5.13\%	4.31\%
Risk Measure:								
Annual Volatility (σ)	7.62\%	7.80\%	11.45\%	9.08\%	7.38\%	8.82\%	6.17\%	7.41\%

Note: Nearly $\mathbf{9 0 \%}$ of long-run returns determined by the Fundamental Return.

Some Thoughts on Real Estate Pricing: Agenda

- Context:
- "Bubble" pricing?
- Past bubbles
- Greenspan's definition of a bubble
- The Spread between Interest Rates and Cap Rates:
- Historical perspective - including inflation's role
- Interest rates v. cash-flow yields
- Tilting your portfolio: bonds v. real estate
- Impacts of shifting capitalization rates
- How Real Estate Ought to be Priced:
- What do I want v. How will it be generated?
- TIPS market \square real-return requirements
- Current capitalization rates v. history
- Addendum: Forward (Interest \& Inflation) Rates

The Path of Values \& Cap Rates

- High prices and low cap rates have many of us apprehensive:

Exhibit 11: NCREIF Index - Market Values, Rescaled NOI and Capitalization Rates Based on a \$100 Investment for the Period 1978 through 2016

A Statistical Look at Capitalization Rates

- Examining the evolving mean, \bar{x}, and volatility, σ, of capitalization rates:

Exhibit 12: NCREIF Index - Various Measures of De-Meaned Capitalization Rates for the Period 1978 through 2016

Possible Explanation: Path of Interest Rates?

- Of course, we rationalize cap rates based on interest rates:

Historical Path of Treasury Bond Interest Rates
1-, 10- and 30-year Maturities for the Period 1954 through 2016

What Is the Appropriate Cash-Flow Yield?

- WANT: Recall the link between the nominal (k) and real (r) returns:

$$
k_{R E}=\left(1+r_{R E}\right)(1+\rho)-1
$$

- How: Ignoring cap-rate shifts ($\nabla=1.0$), total return is also given by:

$$
k_{R E}=\frac{C F_{1}}{P_{0}}+g=\frac{C F_{1}}{P_{0}}+\lambda \rho \quad\{\text { Recall: } g=\lambda \rho\}
$$

-Let's set these equations to one another (and solve for $C F_{1} / P_{0}$):

Variations on the Appropriate Cash-Flow Yield

-Recall the appropriate cash-flow yield:

$$
\frac{C F_{1}}{P_{0}}=r_{R E}(1+\rho)+\rho(1-\lambda)
$$

- Consider the first of two cases:

1. If markets are in equilibrium $(\lambda=1.0 \Rightarrow g=\rho)$, then:

$$
\left.\begin{array}{c}
\frac{C F_{0}(1+\Omega)}{P_{0}}=r_{R E}(1+\propto)+\rho(1-1) \\
\frac{C F_{0}}{P_{0}}=r_{R E}
\end{array}\right) \quad \begin{aligned}
& \left\{\text { Recall: } C F_{1}=\mathrm{CF}_{0}(1+\lambda \rho)\right\} \\
& \text { Eliminate and collect terms }
\end{aligned}
$$

- So, if markets are in equilibrium, then real estate's real return is its trailing cash-flow yield $\left(C F_{0} / P_{0}\right)$, irrespective of the inflation rate!

Variations on the Appropriate Cash-Flow Yield

-Again, recall the appropriate cash-flow yield:

$$
\frac{C F_{1}}{P_{0}}=r_{R E}(1+\rho)+\rho(1-\lambda)
$$

- Consider the second of two cases:

2. Markets generally talk in terms of cap rates, so let's restate:

$$
\begin{gathered}
\frac{C F_{1}}{P_{0}}=\frac{N O I_{1}(\bar{b})}{P_{0}}=r_{R E}(1+\rho)+\rho(1-\lambda) \\
\frac{N O I_{1}}{P_{0}}=\frac{r_{R E}(1+\rho)+\rho(1-\lambda)}{\bar{b}}
\end{gathered}\left\{\begin{array}{l}
\left\{\text { Recall: } N O I_{1} * \bar{b}=\mathrm{CF}_{1}\right\} \\
\text { Restate terms }
\end{array}\right.
$$

-If history is a fair guide to the future, then multiply the appropriate cashflow yield by $3 / 2$ (i.e., $\bar{b} \approx 2 / 3$) in order to find the appropriate capitalization rate.

Likely Real Returns in the Current Environment

- Recall the appropriate capitalization rate and solve for $r_{R E}$:

$$
\begin{gathered}
\frac{N O I_{1}(\bar{b})}{P_{0}}=\frac{r_{R E}(1+\rho)+\rho(1-\lambda)}{\bar{b}} \\
r_{R E}= \\
\frac{\frac{N O I_{1}}{P_{0}} \bar{b}-\rho(1-\lambda)}{(1+\rho)}
\end{gathered}
$$

- Consider some plausible parameterization:

$$
r_{R E}=\frac{(4.5 \%)(67 \%)-.02(1-.7)}{(1+.02)} \approx 2.5 \%
$$

$$
\text { Recall: } \bar{r}_{R E} \approx 5.6 \%
$$

However, today's
5 -year TIPS $\approx 0.2 \%$

Valuations \& Interest Rates: Conceptual

-Some investors naively assume:

- Interest Rates $\uparrow \rightarrow$ Asset Prices \downarrow
- However, a change in interest rates $=f(\cdot)$:
- a change in inflation (ρ) expectations, and/or
- a change in the real return (r) requirement.
-These two factors can have very different impacts on asset values:
-Inflation $\uparrow \rightarrow$ Interest Rates $\uparrow \rightarrow$ Asset Prices \uparrow
-Real Return $\uparrow \rightarrow$ Interest Rates $\uparrow \rightarrow$ Asset Prices \downarrow
-Inflationary increases may be favorable for real estate
-Real return increases may be unfavorable for most all asset classes, including real estate

Valuations \& Interest Rates: Technical

-Restate earlier equation(s) in terms of price $\left(P_{0}\right)$:

$$
P_{0}=\frac{C F_{0}(1+\lambda \rho)}{\left(1+r_{R E}\right)(1+\rho)-1-\lambda \rho}
$$

-Take the derivative when in equilibrium and when not:

When $\lambda=1$

This is our earlier result; prices are unaffected.

$$
\frac{\partial P_{0}}{\partial \rho}=0
$$

$$
\frac{\partial P_{0}}{\partial \rho}=\frac{-C F_{0}\left(1+r_{R E}\right)(1-\lambda)}{\left[\left(1+r_{R E}\right)(1+\rho)-1-\lambda \rho\right]^{2}}
$$

$$
\frac{\partial P_{0}}{\partial r_{R E}}=\frac{-C F_{0}(1+\rho)(1+\lambda \rho)}{\left[\left(1+r_{R E}\right)(1+\rho)-1-\lambda \rho\right]^{2}}
$$

$$
\frac{\partial P_{0}}{\partial \lambda}=\frac{C F_{0}\left(1+r_{R E}\right)(1+\rho) \rho}{\left[\left(1+r_{R E}\right)(1+\rho)-1-\lambda \rho\right]^{2}}
$$

When markets are not in equilibrium (and $\lambda<1$), property values fall when inflation (ρ) increases.

The effect is worse when markets are not in equilibrium (and $\lambda<1$).

Property values rise (fall) as λ improves (worsens).

Importance of TIPS Rates: Historical Path

- Given pro-cyclical TIPS yields, will we see those rates move substantially higher?

Schizophrenic Relationship with TIPS Rates?

- No statistically reliable relationship between RE's real yield and TIPS rates:

Exhibit 14: A Comparison of Realized Real Returns on U.S. Treasury and the NCREIF Property Index for Various Time Periods

	1978-2016	1987-2006	2003-2016	
	(Entire History)	(Low Inflation \& Pre-Crisis)	(TIPS History)	
NCREIF Property Index	5.79\%	5.37\%	7.36\%	
U.S. Treasury Bonds	5.70\%	5.86\%	4.53\%	
Mean Difference ($\phi_{\text {RE }}$)	$\underline{\underline{0.09 \%}}$	$\underline{-0.49 \%}$	2.83\%	Recall that these spreads ignores fees and illiquidity of CRE.
Volatility of Difference	$\underline{\underline{14.70 \%}}$	$\underline{\underline{12.85 \%}}$	$\underline{\underline{14.08 \%}}$	
Standard Error	$\underline{\underline{2.35 \%}}$	$\underline{\underline{2.87 \%}}$	3.76\%	

None of these differences are statistically significant.
\therefore History is not much of a guide and we are left with trying to determine ex ante as to the appropriate spread (perhaps the most-recent period is the best indication).

Asset Bubbles \leftarrow Who Cares?

- If you are a long-term, low-levered CRE investor, these deviations matter little.
- So, these asset bubbles matter more to:
- Long-term, high-levered investors - particularly those with short-term debt maturities (e.g., Macklowe's EOP | Manhattan*) and/or poorly laddered maturities (e.g., pre-crash GGP v. SPG).
- Short-term investors (e.g., value-add \& opp funds, developers, etc.).
- High-leverage, high-yield lenders - particularly those with levered balance sheets (e.g., Blackstone mortgage REIT, Colony Capital debt funds, etc.).
- Government agencies (e.g., Fannie, Freddie, HUD, Fed, etc.):

0 with exposure to high-leverage borrowers, and
0 who become the "lenders of last resort" in a downturn.

* Aggravated by $\$ 1$ billion recourse bridge loan.

Concluding Remarks

- We have looked at two key aspects of real estate pricing:
- First, the spread between interest rates and cap rates was examined:
- The former represents a riskless, nominal-yield, fixed-rate security,] These are very
- While the latter represents a risky, real-yield, real-yield security. J different securities
- The difference represents the market's consensus view on: $\delta=g-\left(r_{R E}-r_{T B}\right)$
- Investors tilt their portfolios, depending on how their views differs from the consensus.
- Second, the appropriate cap rate depends on balancing what and how:

$$
\frac{N O I_{1}}{P_{0}}=\frac{r_{r_{R E}(1+\rho)}^{\begin{array}{c}
\text { Real return, grossed } \\
\text { up for inflation }
\end{array}}+\begin{array}{c}
\text { Uncompensated } \\
\text { portion of inflation }
\end{array}}{\bar{b}}
$$

- When markets are in equilibrium $(\lambda=1)$, changes in inflation (ρ) have no effect.
- Regardless of market equilibrium, changes in the real return $\left(r_{R E}\right)$ have a large effect.
- The impact (Δ) of cap-rate shifts (∇) can be approximated by:

$$
\Delta=f(N, \nabla) \approx \sqrt[N]{\frac{1}{\nabla}}-1
$$

Some Thoughts on Real Estate Pricing: Agenda

- Context:
" "Bubble" pricing?
- Past bubbles
- Greenspan's definition of a bubble
- The Spread between Interest Rates and Cap Rates:
- Historical perspective - including inflation's role
- Interest rates v. cash-flow yields
- Tilting your portfolio: bonds v . real estate
- Impacts of shifting capitalization rates
- How Real Estate Ought to be Priced:
- What do I want v . How will it be generated?
- TIPS market \square real-return requirements
- Current capitalization rates v. history
- Addendum: Forward (Interest \& Inflation) Rates

Today's Yield Curve \& Future Interest Rates

-The "expectations theory" of future interest rates:
\(\left.\begin{array}{cc}Maturity \& Rate

1 year \& 2.0 \%

2 years \& 2.5 \%\end{array}\right] \quad\)| Then: |
| :---: |
| The implied one-year |
| interest rate in one year |
| is expected to be $\sim 3.0 \%$ |

-That is, bond investors are assumed to be indifferent between:

$$
\underbrace{(1+.02)(1+x)}=\underbrace{(1+.025)^{2}} \rightarrow x \approx .03
$$

Holding the 1-year security and "rolling over" to 1- year security in the second year

Holding the 2-year security to maturity

Today's Yield Curve \& Future Interest Rates

Consider one more period:

| $\left.\begin{array}{cc}\text { Maturity } & \underline{\text { Rate }} \\ 1 \text { year } & 2.00 \% \\ 2 \text { years } & 2.50 \% \\ 3 \text { years } & 2.75 \%\end{array}\right]$ | Then:
 The implied one-year
 interest rate in two years
 is expected to be $\sim 3.25 \%$ |
| :---: | :---: | :---: |

That is, bond investors are assumed to be indifferent between:

$$
(1+.025)^{2}(1+y)=(1+.0275)^{3} \Rightarrow y \approx .0325
$$

Holding the 2-year security and "rolling over" to 1 - year security in the third year

Holding the 3-year security to maturity

This approach can be extended to the entirety of today's yield curve

Today's Yield Curve

Yield Curve for U.S. Treasury Rates as of October 27, 2017

Sources: US Department of the Treasury and Instructor's calculations.

Current and Implied Forward 1-Year Treasury Rates as of October 27, 2017

Market's View of Expected Future Five-Year Treasury Rates

Current and Implied Forward 5-Year Treasury Rates as of October 27, 2017

Current and Implied Forward 10-Year Treasury Rates as of October 27, 2017

Today's Yield Curve \rightarrow Expected Inflation

Sources: U.S. Department of the Treasury [Rates as of October 27, 2017] and Instructor's calculations.

Market's View of Expected Future One-Year TIPS Rates

Current and Implied Forward 1-Year TIPS Rates as of October 27, 2017

Current and Implied Forward 5-Year TIPS Rates as of October 27, 2017

Market's View of Expected Future Ten-Year TIPS Rates

Current and Implied Forward 10-Year TIPS Rates as of October 27, 2017

Today's Yield Curve \& Future Cap Rates

What if the 5 -years TIPS' rate increases by 65 basis point?
Let's assume that cap rates increase by 75 basis points.
Recall: $\left.\quad P_{0}=\frac{C F_{0}(1+\lambda \rho)}{\left(1+r_{R E}\right)(1+\rho)-1-\lambda \rho} \quad\right]$
This is our earlier restatement of the cash-flow yield

If and when that repricing occurs, real estate values will fall by 20% !
However: 1) the impact is always difficult to time, and 2) the adverse impact on total returns is a f (holding period):

Cap-Rate

Holding Period	Shift Effect	
1		-20.00%
2		-10.56%
3		-7.17%
4		-5.43%
5		-4.36%
\vdots		
10		-2.21%

Caveat: Market's View Is Often Wrong

Actual 1 m Libor vs. Historical Forward Curves

A Similar Perspective on Market's Omnipotence

This chart also illustrates the divergence between actual and expected.
Market-predicted LIBOR rate exceeded the actual by 73 bps, on average.

A Similar Perspective: Long-Term (10-Year)Treasuries

Source: Federal Reserve Bank of St Louis, Matthew Kiein's calculations

Sources: Matthew C. Klein, "Greenspan's Bogus 'Conundrum'," FT' Alphaville, September 3, 2015 and referenced in John Cochrane’s The Grumpy Economist blog, September 16, 2015.

Cautionary Note

- If you are really good at forecasting future interest rates:
- Get out of the real estate business!
- Get into the bond-trading business:
$>$ sit in your pajamas,
$>$ trade from home for <1 hour/day, and
$>$ hit the beach (golf course, bike trails, etc.) the rest of your day!

